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Abstract

Many firms, such as banks and insurers, condition their level of service on a con-

sumer’s perceived “quality,” for instance their creditworthiness. Increasingly, firms

have access to consumer segmentations derived from auxiliary data on behavior, and

can link outcomes across individuals in a segment for prediction. How does this prac-

tice affect consumer incentives to exert (socially-valuable) effort, e.g. to repay loans?

We show that the impact of a linkage on behavior depends crucially on whether the

linkage reflects quality (via correlations in types) or a shared circumstance (via com-

mon shocks to observed outcomes).
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1 Introduction

A bank receives a credit card application from a consumer, Alice. In addition to traditional

sources of information about Alice—e.g. her repayment history—the bank also learns from a

data broker that Alice has been classified as an active gym member, based on usage statistics

from gyms and geolocation data from her devices. Since other individuals in the “active gym

member” segment have consistently paid off their credit card balances, the bank provides

Alice with a high credit limit.

This fictional story is increasingly descriptive of actual industry practice. In particular,

data brokers now regularly aggregate personal data about consumers, and use this data to

identify segments of consumers with similar characteristics and likely behaviors. The range

of consumer segments is diverse (see Appendix A for a list of examples): Some focus on

broad lifestyle patterns, e.g. “Bible Lifestyle,” “Soccer Mom,” “Exercise–Sporty Living,”

“New Age/Organic Lifestyle.” Others group consumers based on narrower preferences or

activities, e.g. “Outdoor/Hunting & Shooting,” “Leans Left,” or “Fitness Enthusiast.” Still

others reflect recent life events, such as getting married, buying a home, or sending a child

to college. These segmentations are passed onto companies such as banks and insurance

agencies, who have begun using them to decide what level of service to provide a consumer.1

Identifying similarities across consumers can help an organization to better predict their

behaviors. But categorization also reshapes incentives for effort, e.g. paying off credit card

balances promptly and driving more attentively. If Alice knows that the bank evaluates

her not only based on her own repayment history, but also on the repayment histories of

other individuals in her category, how does that change her incentives to exercise financial

prudence? Since effort in such contexts can be socially valuable, it is important to under-

stand the externalities created when organizations use data from one individual to inform

predictions about others.

1For example: In 2008, the subprime lender CompuCredit was revealed to have re-

duced credit lines based on visits to various “red flag” establishments, including marriage

counselors and nightclubs (see https://www.bloomberg.com/news/articles/2008-06-18/

your-lifestyle-may-hurt-your-credit); some health insurance companies acquire predictions

from data brokers like LexisNexis for anticipated health costs (see https://www.pbs.org/newshour/

health/why-health-insurers-track-when-you-buy-plus-size-clothes-or-binge-watch-tv); the

car insurance company Allstate recently filed a patent for adjusting insurance rates based on routes

and historical accident patterns (see https://www.usatoday.com/story/money/personalfinance/2016/

11/14/route-risk-patent--car-insurance-rate-price/93287372). And perhaps most strikingly,

China’s “social credit” system determines whether an individual is a good citizen based on detailed

attributes ranging from the size of their social network to how often they play video games (see

https://foreignpolicy.com/2018/04/03/life-inside-chinas-social-credit-laboratory).
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To study this question, we fix an exogenously given consumer segment (e.g. all indi-

viduals identified as “active gym members”), and consider the incentives of those agents.

Our framework is a multiple-agent version of the classic career concerns model (Holmström

1982a). Each agent has an unknown type (e.g. creditworthiness), which a principal (a bank)

would like to predict. Agents choose whether to opt-in to interaction with the principal

(sign up for a credit card). The principal observes an outcome (the agent’s past repayment

behavior) from each agent who opts in, which is informative about the agent’s underlying

type, but also perhaps about the types of others in his segment. The agent can manipulate

his own outcome via costly effort (exercising financial prudence). We say that a data linkage

exists when a principal bases its prediction of the agent’s type on the outcomes of other par-

ticipating agents, in addition to the agent’s own data. Data linkages create an informational

externality across agents.

We study how these data linkages affect both consumers’ willingness to opt in to relation-

ships with a principal, as well as their incentives to exert effort in those relationships. The

answer depends crucially on the way in which each agent’s outcome is informative about

others in his segment. We contrast two distinct models of linkages between agents. One

model of data linkage relates to agents’ quality. Within such segments, the types that the

principal cares about forecasting are correlated. In the credit example, this relationship may

be a lifestyle pattern (e.g. “Frequent Flier,” “Fitness Enthusiast,” “Exercise—Sporty Liv-

ing”) or personal characteristic (e.g. “Working-class Mom,” “Spanish Speaker”). Lending

outcomes from consumers in such a segment can be used to better predict repayment for

other similar individuals. The second model of linkage relates to a common circumstance.

In such segments, agents experience common shocks to their outcomes. For example, drivers

who commute on the same roads to work are exposed to similar variations in local road con-

ditions, e.g. construction or bad weather. Auto insurers can use their aggregated outcomes

to estimate the sizes of these shocks and de-bias observed accident rates.

We show that these two models of data linkages result in starkly different equilibrium

behaviors. When a linkage across individuals in a segment relates to quality, linking the

agents ensures full participation, but depresses the amount of effort they exert (relative to

a benchmark in which the principal does not observe the linkage). In contrast, when the

identified linkage is about a shared circumstance, linking agents reduces participation rates,

but raises the amount of effort that participating agents exert. These results are robust to

agent uncertainty about the details of the segment—such as the strength of the correlation

between outcomes and the size of the population—requiring only that agents know whether

their linkage to other agents relates to quality or circumstance.

The main intuition is as follows. In the quality linkage model, consumer data are sub-
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stitutes—for instance, observation of repayment rates for other active gym members helps a

bank to learn an average long-run repayment rate for this segment, reducing the marginal

informativeness of any given borrower’s outcome. Thus, when the principal aggregates data

from consumers within the segment, distortion of one’s outcome via extra effort has a smaller

influence on the principal’s perception about one’s type. In contrast, in the circumstance

linkage model, consumer data are complements—for instance, observation of accident rates

for other drivers who take the same roads to work is informative about the size of the “road

condition shock” on insurance claims. Each driver’s de-biased claims rate is more informa-

tive about his type, so the value to exerting effort to improve the observed outcome becomes

larger under the linkage.

These comparative statics have direct implications for consumer payoffs from participa-

tion: In our model, as in Holmström (1982a), the principal correctly infers the equilibrium

level of effort and can de-bias observed outcomes.2 Since effort is costly, higher equilibrium

effort necessarily means lower payoffs for agents. (If effort is socially valuable, this need not

imply lower social welfare, as we discuss below.) Thus, in the quality linkage model, agent

participation decisions are strategic complements: Participation by one agent improves the

payoffs to participation for other agents by decreasing equilibrium effort. We show existence

of a unique equilibrium in which all agents choose to opt-in to interaction with the principal.

In contrast, in the circumstance linkage model, participation creates a negative externality

on other agents by increasing equilibrium effort. For small populations, there is again an

all opt-in equilibrium, while for large populations, agents must mix over entry in the unique

symmetric equilibrium.

Our results can be readily mapped into real-world consequences for specific applications.

If a credit card issuer links borrowers in a segment, where agents in that segment have

correlated qualities—e.g. because of a common lifestyle or level of financial literacy—agents

will retain their credit cards, but this linkage will cause agents in that segment to exercise

less financial prudence, increasing default rates. A firm that values responsible financial

behavior may therefore prefer to commit not to use big data analytics for identifying such

correlations, instead forecasting each agent’s behavior in isolation.

On the other hand, if agents within the segment share a common circumstance—e.g.

having recently moved or started a new job—then the linkage induces participating agents

to exert higher effort. Depending on the size of the segment, these linkages may also cause

2Frankel and Kartik (2019b) introduces uncertainty in the ability of agents to manipulate outcomes, so

that the principal cannot perfectly de-bias the impact of effort. In such settings a reduction in incentives

for effort improves the precision of forecasts, creating a tradeoff for the principal when effort and precise

forecasts are both valuable.
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some agents to withdraw from interaction with the principal, e.g. by canceling their credit

cards. For sufficiently small segments, the organization enjoys full participation and higher

effort, in which case the data linkage unambiguously benefits the principal. On the other

hand, if the segment is sufficiently large, then the linkage results in higher effort but lower

rates of participation. Whether the organization benefits from use of this linkage then

depends on how it trades off between these two goals.

Our results also have important implications for the impact of data linkages on social

welfare. We first show that in both models and for all segment sizes, equilibrium actions

are inefficiently low relative to the first-best (extending a result established in Holmström

(1982a) for Gaussian signals). We then compare equilibrium outcomes against a “no link-

ages” benchmark in which the principal is permitted to use only an agent’s own past data

to predict his type. When agents are connected by a quality linkage, aggregation of data

across agents invariably leads to a reduction in social welfare. In contrast, when agents share

common circumstances, the welfare implications of data linkages depend on the number of

agents within the segment, and can go either way. These results suggest that the type of

data being used to link agents is a crucial determinant of the welfare effect of data linkages.

Finally, we use our model and results to comment on a current policy debate regarding

whether firms should have proprietary ownership of their data, or if this data should be shared

across an industry (as for example recently recommended by the European Commission).3

To study this issue, we extend our model to a setting with many principals (firms) who

compete over consumers via a monetary reward for participation. Under proprietary data,

firms observe only the outcomes of agents who participate with them, while under data

sharing, the outcomes of all agents are shared across firms. We show that regardless of

whether agents are linked by quality or circumstance, data sharing leads to an increase in

consumer welfare. Market forces play a key role in this result: in particular, if firms were not

able to optimize their participation rewards, then the welfare implications of data sharing

would depend on the nature of the linkage.

3As reported in European Commission (2020): “[T]he Commission will explore the need for legislative

action on issues that affect relations between actors in the data-agile economy to provide incentives for

horizontal data sharing across sectors.” Such action might “support business-to-business data sharing, in

particular addressing issues related to usage rights for co-generated data...typically laid down in private

contracts. The Commission will also seek to identify and address any undue existing hurdles hindering data

sharing and to clarify rules for the responsible use of data (such as legal liability). The general principle

shall be to facilitate voluntary data sharing.”
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1.1 Related Literature

Our paper contributes to an emerging literature regarding the welfare consequences of data

markets and algorithmic scoring. This literature has tackled several important social ques-

tions, such as whether predictive algorithms discriminate (Chouldechova 2017; Kleinberg

et al. 2017); how to protect consumers from loss of privacy (Acquisti et al. 2015; Dwork and

Roth 2014; Eilat et al. 2019; Fainmesser et al. 2019); how to price data (Agarwal et al. 2019;

Bergemann, Bonatti, and Smolin 2018); whether seller or advertiser access to big data harms

consumers (Gomes and Pavan 2018; Jullien et al. 2018); and how to aggregate big data into

market segments or consumer scores (Bonatti and Cisternas 2019; Elliott and Galeotti 2019;

Hidir and Vellodi 2019; Ichihashi 2019; Yang 2019). There is additionally a growing litera-

ture about strategic interactions with machine learning algorithms: see Eliaz and Spiegler

(2018) on the incentives to truthfully report characteristics to a machine learning algorithm,

and Olea et al. (2018) on how economic markets select certain models for making predictions

over others.

In particular, Acemoglu et al. (2019) and Bergemann, Bonatti, and Gan (2019) also

consider externalities created by social data. Different from us, these papers study data

sharing in environments where consumers may sell their data. In Bergemann, Bonatti, and

Gan (2019), one agent’s information improves a firm’s ability to price-discriminate against

other agents, which can decrease consumer surplus. In Acemoglu et al. (2019), agents value

privacy, and thus information collected about one agent imposes a direct negative externality

on other agents when types are correlated. The externality of interest in the present paper

is how information provided by other agents reshapes incentives to exert costly effort. As we

show, this externality can be positive or negative—in particular, when agents are connected

by a quality linkage, their equilibrium payoffs turn out to be increasing in other agents’

participation.

At a theoretical level, our paper builds on the career concerns model of Holmström

(1982a), the classic framework for analyzing the role of reputation-building in motivating

effort. The interaction of this incentive effect with informational externalities from other

agents’ behavior is the main focus of our analysis. The literature following Holmström

(1982a) has largely focused on signal extraction about a single agent’s type in dynamic

settings,4 while we are interested in the externalities of social data in a multiple-agent setting.

Our paper is most closely related to Dewatripont et al. (1999), which studies how auxiliary

4A small set of papers, e.g. Auriol et al. (2002), study career concerns in a multiple-agent setting. These

papers typically look at effort externalities instead of informational externalities. One exception is Meyer

and Vickers (1997), which considers the impact of adding an additional agent with correlated outcomes in

the context of a ratchet effect model with incentive contracts.
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data impacts agents’ incentives for effort. That paper considers the externality of a single

exogenous auxiliary signal, while we endogenize the auxiliary data as information from other

players, who strategically decide whether or not to provide data. Thus, the number of

auxiliary signals is determined in equilibrium, and may also be uncertain; this requires

comparison of equilibrium actions across various information structures.

Our circumstance linkage model, in which the principal uses outcomes from some agents

to help de-bias the outcomes of other agents, is reminiscent of the relational contracting

and tournaments literatures (Green and Stokey 1983; Holmström 1982b; Lazear and Rosen

1981; Meyer and Vickers 1997; Shleifer 1985). In these papers, the observable output of each

agent depends both on the agent’s effort as well as on a common shock experienced by all

agents. In such environments the relative output of an agent is a more precise signal of effort

than the absolute output. Thus the principal may be able to extract more effort through

rewarding good relative outcomes rather than good absolute outcomes. Although we do not

consider a contracting environment here, similar forces in our model permit the principal to

extract more effort from agents when their outcomes are related by correlated shocks.

Finally, our paper contributes to work on strategic manipulation of information. Recent

papers in this category include: Frankel and Kartik (2019a) and Ball (2019), which charac-

terize the degree to which a principal with commitment power should link his decision to

a manipulated signal about the agent’s type; Hu et al. (2019), which shows that heteroge-

neous manipulation costs across different social groups can lead to inequities in outcomes;

and Georgiadis and Powell (2019), which studies optimal information acquisition for a de-

signer setting a wage contract. Our paper contributes to this literature by exploring the role

of correlations across data in an individual’s incentives to manipulate an observed outcome.

2 Model

A single principal interacts with N < ∞ agents, who have been identified as belonging to

the same consumer segment. Each agent i has a type θi ∈ R, which is unknown to all parties

(including agent i) and is commonly believed to be drawn from the distribution Fθ with

mean µ > 0 and finite variance σ2
θ > 0.5 Types are drawn symmetrically but may not be

independent across agents.

As in the classic career concerns model of Holmström (1982a), each agent’s payoffs are

5None of our results would change if we gave the principal access to additional privately observed covariates

for use in forecasting. Specifically, we could allow θi to be decomposable as θi = θ0
i + ∆θi, where θ0

i is

commonly unobserved with mean 0 while ∆θi is an idiosyncratic type shifter, independent of θ0
i with mean

µ, which is privately observed by the principal.
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increasing in the principal’s perception of his type, and the agent can exert costly effort to

influence an outcome realization that the principal observes (Section 2.2). Different from

Holmström (1982a), we introduce a preliminary stage at which the agent first chooses whether

to opt-in or out of interaction with the principal (Section 2.1), and—most importantly—we

allow the principal to aggregate the outcomes of multiple agents for prediction (Section 2.3).

The model unfolds over three periods, with opt-in/out decisions made in period t = 0,

effort exerted in period t = 1, and forecasts of each agent’s type based on outcomes updated

in period t = 2.

2.1 Period 0—Opt-In/Opt-Out

At period t = 0, each agent i first chooses whether to opt-in or opt-out of an interaction

with the principal, where this decision is observed by the principal, but not by other agents.

Opting out yields a payoff that we normalize to zero. The set of agents who opt-in is denoted

Iopt-in ⊆ {1, . . . , N}.

2.2 Period 1—Choice of Costly Effort to Influence Outcome

In period t = 1, each agent i ∈ Iopt-in privately chooses a costly effort level ai ∈ R+ to

influence an observable outcome. The outcome, Si, is related to the agent’s type and effort

level via

Si = θi + ai + εi,

where εi ∼ Fε is a noise shock with mean E[εi] = 0 and finite variance E[ε2
i ] = σ2

ε > 0.

Noise shocks are drawn symmetrically but not necessarily independently across agents. We

describe the correlation structure across shocks in Section 2.3. The agent’s payoff in this

period is

R− C(ai)

where R ∈ R is a monetary opt-in reward from the principal (possibly negative), and C(ai)

is the cost to choosing effort ai. We suppose that the cost function is twice continuously

differentiable and satisfies limai→∞C
′(ai) > 1, C(0) = C ′(0) = 0, and C ′′(ai) > 0 for all ai.

2.3 Period 2—Principal’s Forecast of Agent’s Type

In a second (and final) period, each agent i ∈ Iopt-in receives the principal’s forecast of the

agent’s type θi. The principal’s forecast is based on the observed outcomes of all agents who
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have opted-in; thus, agent i’s payoff in the second period is

E [θi | Sj, j ∈ Iopt-in] . (1)

Note that since each agent’s effort choice is private, the forecast is based on a conjectured

effort choice, which in equilibrium is simply the equilibrium effort level. This payoff is a

stand-in for the reputational consequences of the agent’s period-1 outcome.6 Note that the

agent’s payoff is increasing in the principal’s forecast of their type, reflecting the role of θi

as a quality variable determining average outcomes.

The quantity in (1) depends on the (random) realizations of output; thus, the agent

optimizes over his expectation of (1). We will discuss this iterated expectation of θi in detail

in Section 3.1. Finally, the agent’s total payoff is the sum of his expected payoffs across the

two periods. This timeline is summarized in Figure 1.

t = 0

opt-in

opt-out

t = 1 t = 2

exert e↵ort ai

generate outcome
Si = ✓i + ai + "i

receive R C(ai)

receive E [✓i | Sj , j 2 Iopt-in]

receive zero receive zero

Figure 1: Timeline

So far we have not described how agent outcomes are correlated, a specification which is

crucial for computing the posterior expectation in (1). Our main analysis contrasts two kinds

of relationships across agents, one in which agents within a segment have related qualities,

and another in which they share a related circumstance:

6One could view this payoff as representing the agent’s payoff in a second-period market where multiple

firms compete to serve the agent. Our main results would be unchanged if we allowed the agent’s reputa-

tional payoff to be any increasing affine transformation of E [θi | Sj , j ∈ Iopt-in], accommodating service over

multiple future periods and different assumptions regarding market structure and price-setting.
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Quality Linkage. Suppose first that agents within the segment have correlated qualities.

We model this by decomposing θi as

θi = θ + θ⊥i ,

where θ ∼ Fθ is a common component of the type and θ⊥i ∼ Fθ⊥ is a personal or idiosyncratic

component, with each θ⊥i independent of θ and all θ⊥j for j 6= i. Without loss, we assume

E[θ] = µ while E[θ⊥i ] = 0. In contrast, the shocks εi are mutually independent.

Circumstance Linkage. Another possibility is that agents within the segment don’t have

qualities which are intrinsically related, but instead have experienced a shared shock to

outcomes. Formally, we suppose that the noise shock can be decomposed as

εi = ε+ ε⊥i

where ε ∼ Fε is shared across agents and ε⊥i ∼ Fε⊥ is idiosyncratic, with each ε⊥i independent

of ε and all ε⊥j for j 6= i. In contrast, agents’ types θi are mutually independent.

The distinction between quality and circumstance linkages can be interpreted in at least

two ways. One interpretation is that θi is the portion of the outcome that is valuable to the

principal, while εi is a confounder that has an effect on the observed outcome, but is not

payoff-relevant. Another interpretation is that the type θi is a permanent component of the

agent’s performance while εi is a shock that affects performance only temporarily. Many of

our subsequent examples are of the latter form, where εi reflects a transient characteristic

that affected outcomes in a previous observation cycle, but is no longer present in future

interactions. For example, if an agent was pregnant during the determination of Si, but has

since given birth, then the principal should optimally de-noise the “pregnancy effect” from

the prior outcome when predicting future behaviors. Throughout the paper, we consider

these two models of linkage separately in order to clarify the difference between them.

Note that while the correlation structure across agent outcomes differs in the two models,

we will hold the marginal distributions of each agent’s type and noise shock fixed across

models (see Assumption 2).

2.4 Examples

Commuters and auto-insurers. The principal is an auto-insurer and the agents are

commuters. Agent i’s type θi is a function of his accident risk while driving, with higher-

type commuters experiencing a lower risk of accidents while driving to work. Each commuter
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decides whether to own a car versus commuting via rideshares or public transit. Conditional

on owning a car, the commuter then chooses how much effort to exert to drive safely. The

insurance company observes his claims rate during an initial enrollment period, and uses

that outcome to predict his future claims rates.

Examples of quality linkage segments include drivers who share similar commutes to

work, e.g. routes primarily through surface streets or via highways, where these routes are

discoverable from geolocational data. If we suspect that commutes are stable and that the

route taken contributes to the risk of accident, then claims rates for other drivers in the

segment are directly informative about the future accident risk for a given driver. Exam-

ples of circumstance linkage segments include drivers who passed through routes that were

previously affected by unusual road or weather conditions. Crucially, these conditions are

not expected to persist into the subsequent period.7 The principal can use claims rates from

drivers in this segment to learn the size and direction of the “road shock” or “weather shock,”

allowing them to de-bias observed accident rates.

Consumers and credit-card issuers. The principal is a bank issuing a credit card and

agents are consumers. Agent i’s type θi is his creditworthiness, with more creditworthy

consumers being better able to pay back short-term loans. Each agent decides whether to

sign up for a credit card versus making payments by debit card or cash. If an agent signs up

for a credit card, he decides how much effort to exert in order to ensure repayment (e.g. by

increasing income or avoiding activities that risk financial loss), and the card issuer observes

his repayment behavior during an initial enrollment period.

Quality linkages relevant to creditworthiness include lifestyles (“Frequent Flier”) and

financial sophistication (“Subscriber to Financial Newsletter”), categories which can be re-

vealed by social media usage and online subscription databases. Circumstance linkages

include whether a consumer’s child was previously attending college (but has since gradu-

ated) and whether a family member was previously experiencing a serious illness (but has

since improved), as inferred for example from purchasing and travel histories.

2.5 Solution Concept

We study Nash equilibria in which agents choose symmetric participation strategies and pure

strategies in effort. Our focus on symmetric participation reflects the ex-ante symmetry of

consumers in our model, and their anonymity with respect to one another in most data

7If the conditions are persistent, we would consider the consumers instead to be related by a quality

linkage.
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markets. In the absence of a centralized mechanism, we expect that consumers would find

it challenging to coordinate asymmetric participation. Our restriction to equilibria with

deterministic effort follows the career concerns literature, and plays an important role in

maintaining tractability.8

We additionally impose a refinement on out-of-equilibrium beliefs. Since agents choose

participation and effort simultaneously in our model, Nash equilibrium puts no restrictions

on the principal’s inference about effort in the event that an agent unexpectedly enters. We

require that if an agent unilaterally deviates to entry, the principal expects that the agent

will exert the equilibrium effort choice from a single-agent game with exogenous entry. This

refinement mimics sequential rationality in a modified model in which agents make entry and

effort decisions sequentially rather than simultaneously. In what follows, we will us the term

equilibrium without qualification to refer to symmetric equilibria in pure effort strategies

satisfying this refinement.

2.6 Distributional Assumptions

We impose several regularity conditions on the distributions Fθ, Fθ⊥ , Fε, and Fε⊥ , which

are maintained throughout the paper. Assumptions 1 through 4 are purely technical, and

ensure that all distributions have full support and are smooth enough for appropriate deriva-

tives of conditional expectations to exist. Assumptions 5 and 6 are substantive, and ensure

monotonicity of inferences about latent variables in outcome and sufficiency of the first-order

approach for characterizing equilibrium effort.

Assumption 1 (Regularity of densities). The distribution functions Fθ, Fθ⊥ , Fε, Fε⊥ admit

strictly positive, C1 density functions fθ, fθ⊥ , fε, fε⊥ with bounded first derivatives on R.

Assumption 2 (Invariance of marginal densities). In each model, the distribution functions

Fθ and Fε have density functions fθ and fε satisfying fθ = fθ ∗ fθ⊥ and fε = fε ∗ fε⊥ , where

∗ is the convolution operator.

In each model one half of Assumption 2 is redundant, as in the quality linkage model

θi = θ + θ⊥i while in the circumstance linkage model εi = ε + ε⊥i . The remaining half of the

assumption ensures that θi and εi have the same marginal distributions across models. The

following corollary reflects the fact that convolutions of variables satisfying the properties of

Assumption 1 inherit those properties.

8When agents mix over effort, then even under the assumptions imposed in Section 2.6 higher output is

not guaranteed to lead to higher inferences about types. Depending on the equilibrium distribution of effort,

the principal may instead attribute a positive output shock to high realized effort. See Rodina (2017) for

further discussion.
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Corollary 1. fθ and fε are strictly positive, C1, and have bounded first derivatives on R.

The following assumption ensures that posterior expectations are smooth enough to com-

pute first and second derivatives of an agent’s value function, and to compute the marginal

impact of a change in one agent’s outcome on the forecast of another agent’s type. Let

S = (S1, ..., SN) be the vector of outcomes for all agents, with a = (a1, ..., aN) the vector of

actions for all agents.

Assumption 3 (Regularity of posterior expectations). For each model, population size N ,

agent i ∈ {1, ..., N}, and outcome-action profile (S, a):

• ∂
∂Sj

E[θi | S; a] exists and is continuous in S for every j ∈ {1, ..., N},

• ∂2

∂S2
i
E[θi | S; a] exists.

The following assumption is a slight strengthening of the requirement that the Fisher

information of Si about its common component (θ in the quality linkage model or ε in the

circumstance linkage model) be finite. Let fε+θ⊥ ≡ fθ⊥ ∗ fε and fθ+ε⊥ ≡ fθ ∗ fε⊥ .

Assumption 4 (Finite Fisher information). For each f ∈ {fε+θ⊥ , fθ+ε⊥}, there exists a

∆ > 0 and a dominating function J : R→ R+ such that(
1

∆

f(z −∆)− f(z)

f(z)

)2

≤ J(z)

for all z ∈ R and ∆ ∈ (0,∆) and ∫
J(z)f(z) dz <∞.

Roughly, this assumption ensures that finite-difference approximations to the Fisher infor-

mation are also finite and uniformly bounded as the approximation becomes more precise.9

The following assumption imposes enough structure on the distributions of the compo-

nents of each agent’s outcome to ensure that higher outcome realizations imply monotonically

higher forecasts of the components of the outcome.

9 A sufficient condition for Assumption 4 is that fε+θ⊥ and fθ+ε⊥ don’t vanish at the tails “much faster”

than their derivatives: specifically, for each f ∈ {fε+θ⊥ , fθ+ε⊥} there should exist a K > 0 and ∆ > 0 such

that:

max
ε∈R,∆∈[0,∆]

∣∣∣∣f ′(ε−∆)

f(ε)

∣∣∣∣ ≤ K.
This sufficient condition is satisfied, for example, by the t-distribution and the logistic distribution. It is

not satisfied by the normal distribution, although we show in Appendix O.2.1 using other methods that the

normal distribution does satisfy Assumption 4. We are not aware of any commonly-used distributions which

violate Assumption 4.
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Assumption 5 (Monotone forecasts). The density functions fθ, fθ⊥, fε, and fε⊥ are strictly

log-concave.10

One basic property of strictly log-concave functions is that the convolution of two log-

concave functions is also strictly log-concave. Thus an immediate corollary of Assumption 5

is the following:

Corollary 2. fθ and fε are strictly log-concave.

Assumption 5 implies monotonicity of forecasts for the following reason. In general, given

three random variables X, Y, Z such that X = Y + Z and Y and Z are independent, strict

log-concavity of the density function of Z is both necessary and sufficient for the distribution

of X to satisfy a strict monotone likelihood-ratio property in Y (Saumard and Wellner 2014):

fX|Y (x′ | y′)
fX|Y (x | y′) >

fX|Y (x′ | y′)
fX|Y (x | y)

if and only if x′ > x, y′ > y.

This monotone likelihood-ratio property is the canonical sufficient condition ensuring mono-

tonicity of the conditional expectation of Y in the observed value of X (Milgrom 1981).

Assumption 5 guarantees that the appropriate monotone likelihood-ratio properties are sat-

isfied in our model; see Appendix B.1 for details.

Finally, we assume the cost function is “sufficiently convex” that effort choices satisfying

a first-order condition are globally optimal. The assumption is a joint condition on the cost

function and the distribution of the outcome, since the required amount of convexity depends

on how sensitive the posterior expectation is to the realization of individual outcomes.

Assumption 6 (Sufficient convexity). There exists a K ∈ R such that C ′′(x) > K for every

x ∈ R+, and for every population size N and agent i ∈ {1, ..., N}, ∂2

∂S2
i
E[θi | S; a] ≤ K for

every (S, a).

One important set of models satisfying these regularity conditions is Gaussian uncertainty.11

Example (Gaussian). For each agent i,
θ

θ⊥i

ε

ε⊥i

 ∼ N



µ

0

0

0

 ,


σ2
θ

0 0 0

0 σ2
θ⊥ 0 0

0 0 σ2
ε 0

0 0 0 σ2
ε⊥


 .

10A function g > 0 is strictly log-concave if log g is strictly concave.
11The Gaussian versions of our quality and circumstance linkage models represent special cases of the

information environment considered in Meyer and Vickers (1997) and Bergemann, Bonatti, and Gan (2019),

both of whom allow for correlation between both types and shocks. The Gaussian version of our quality

linkage model also corresponds to a symmetric version of the environment considered in Acemoglu et al.

(2019).
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We verify in Appendix O.2.1 that Assumptions 1 through 5 are all met in this case, and

Assumption 6 is satisfied by any strictly concave cost function.

3 Preliminary Results: Exogenous Entry

We begin our analysis by studying a restricted model, in which the number of agents who

opt-in is exogenously specified. Without loss, we suppose that all N agents participate.

3.1 Marginal Value of Effort

In equilibrium, agents choose effort such that the marginal impact of effort on the principal’s

forecast in the second period, which we will refer to as the marginal value of effort, equals

its marginal cost. Here we define the marginal value of effort and explore its properties.

Fix an equilibrium effort profile (a∗1, ..., a
∗
N). The principal believes that each outcome is

distributed Si = θi + a∗i + εi, and any agent i who chooses the equilibrium effort level a∗i

believes the same. But if some agent i deviates to a non-equilibrium action ai 6= a∗i , then

he knows that his outcome is distributed Si = θi + ai + εi. This means that the agent’s

expected period-2 reward (i.e. the agent’s expectation of the principal’s forecast of his type)

is an iterated expectation with respect to two different probability measures over the space

of types and outcomes.

Formally, let E∆ denote expectations when agent i chooses effort level a∗i + ∆. For any

profile of realized outcomes (S1, . . . , SN), the principal’s expectation of agent i’s type is

E0[θi | S1, . . . , SN ].

If agent i exerts effort ai = a∗i + ∆, then his ex-ante expectation of the principal’s forecast is

µN(∆) ≡ E∆[E0[θ1 | S1, . . . , SN ]].

Note that if the agent does not distort his effort away from the equilibrium level, then

µN(0) = µ, reflecting the usual martingale property of posterior expectations.

When ∆ 6= 0, posterior expectations under the principal’s beliefs are not a martingale

from agent 1’s perspective: As we show in Appendix C, µN(∆) is strictly increasing in ∆.

Thus, increasing effort beyond the expected effort level always leads to a higher expected

value of the principal’s expectation.12 The agent’s incentives to distort effort away from its

12Kartik et al. (2019) showed that if two agents with differing priors update beliefs in response to signals

about an unknown state, the more optimistic agent expects the other’s expectation of the state to increase.

Our Lemma C.1 complements this result, finding an analogous effect when two agents share a common prior

but disagree about the correlation between the state and the signal.
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equilibrium level are characterized by the marginal value of effort MV (N), which is defined

as

MV (N) ≡ µ′N(0).

Our notation reflects the fact that µ′N(0), thus alsoMV (N), is independent of the equilibrium

effort levels a∗1, ..., a
∗
N , due to the additive dependence of outcomes on effort.

Example. In the Gaussian model described in Section 2.6, an agent who exerts effort a =

a∗ + ∆ expects the principal’s forecast of his type to be

µN(∆) = µ+ β(N) ·∆

for a function β(N) that is independent of ∆ and a. See Online Appendix O.2.2 for the

closed-form expression for β(N) (which differs depending on whether we assume a quality

linkage or circumstance linkage). The existence of closed-form expressions, as well as linearity

of µN(∆), are particular to Gaussian uncertainty, although independence with respect to the

equilibrium effort level is general. The marginal value of effort MV (N) = µ′N(0) is then

simply the constant slope β(N) in this Gaussian setting.

Throughout, we use MVQ(N) and MVC(N) to denote the marginal value functions in the

quality linkage and circumstance linkage models, dropping the subscript when a statement

holds in both models.

3.2 Equilibrium Effort

Since agents are symmetric, they share the same marginal value and marginal cost of effort.

There is therefore a unique effort level a∗(N) satisfying each agent’s equilibrium first-order

condition

MV (N) = C ′(a∗(N)) (2)

equating the marginal value of effort MV (N) with its equilibrium marginal cost C ′(a∗(N)).

This condition is both necessary and sufficient to ensure that—when the principal expects

all agents to exert effort a∗(N)—each agent’s optimal effort choice is indeed a∗(N). The

unique equilibrium of the exogenous-entry model then entails choice of

a∗(N) = C ′−1(MV (N)) (3)

by every agent. When we wish to denote equilibrium effort in the quality linkage or the

circumstance linkage model specifically, we will write a∗Q(N) or a∗C(N) respectively. Note

that a∗Q(1) = a∗C(1); that is, the equilibrium action is the same in the single-agent version of

both models.
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3.3 Key Lemma: Population Size and the Marginal Value of Effort

We now characterize how the number of participating agents impacts each agent’s incentives

to exert effort. This comparative static plays a key role in characterizing equilibrium in the

full model.

Lemma 1. The marginal value of effort exhibits the following comparative static in popula-

tion size:

(a) MVQ(N) is strictly decreasing in N and limN→∞MVQ(N) > 0.

(b) MVC(N) is strictly increasing in N and limN→∞MVC(N) < 1.

That is, the marginal value of effort declines in the number of agents in the quality linkage

model, and increases in the circumstance linkage model. Since C ′ is strictly increasing, it

is immediate from this lemma and (3) that the equilibrium actions a∗(N) display the same

comparative statics.13

Proposition 1. Equilibrium effort in the exogenous entry model exhibits the following com-

parative static in population size:

(a) a∗Q(N) is strictly decreasing in N and limN→∞ a
∗
Q(N) > 0.

(b) a∗C(N) is strictly increasing in N and limN→∞ a
∗
C(N) <∞.

The key to this result is understanding how the number of observations N impacts the

sensitivity of the principal’s forecast of θi to the realization of Si. All else equal, the stronger

the dependence of this forecast on i’s outcome, the stronger the incentive to manipulate its

distribution. In the circumstance linkage model, other agents’ data (which are informative

about the common component of the noise term ε) complements agent i’s outcome, improving

its marginal informativeness. Thus, the larger N is, the more weight the principal puts on

i’s outcome in its forecast of θi. This force incentivizes effort. In the limit as N → ∞, the

principal learns ε perfectly and can de-bias the outcomes accordingly, so the incentives for

agent i to exert effort are the same as in a single-agent model with Si = θi + ε⊥i .

By contrast, in the quality linkage model other agents’ data (which are informative about

the common part of the type θ) substitutes for i’s signal; thus, the larger N is, the less

weight the principal puts on the realization of i’s outcome in its forecast of θi. This force

de-incentivizes effort. In the limit as N → ∞, the principal can extract θ perfectly from

13Meyer and Vickers (1997) establish the same comparative static in a Gaussian setting with up to two

agents; see their Proposition 1.
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the outcomes of other agents but retains uncertainty about θ⊥i , so manipulation of Si is still

valuable. Specifically, the marginal value of effort is the same as in a single-agent model

with Si = θ⊥i + εi.

Although this intuition is straightforward, we do not in general have access to the distri-

bution of the principal’s posterior expectation in closed form, so we cannot directly quantify

the “strength” of the posterior expectation’s dependence on the outcome Si. Moreover, al-

though it is straightforward to show that the sequence of functions µN(∆) converge pointwise

to a limiting function µ∞(∆), the rates of this convergence may vary across ∆. Since we

are interested in the limiting marginal value limN→∞MV (N) = limN→∞ µ
′
N(0), we need the

stronger property of uniform convergence of µN(∆) around ∆ = 0. In Appendix C.2.2, we

show that the expected impact of increasing effort by ∆, i.e. µN(∆)−µN(0), can be bounded

by an expression that shrinks (for Part (a)) or grows (for Part (b)) in N uniformly in ∆.14

This establishes that the marginal value of deviating from equilibrium effort at finite N ,

µ′N(0), indeed converges to the marginal value of effort in the limiting model, µ′∞(0), which

we can separately characterize.

4 Main Results

We now return to the main model, where the agents who participate (and thus the segment

size N from the previous section) are endogenously determined.

4.1 Equilibrium

In equilibrium, the principal correctly de-biases the impact of effort on observed outcomes.

The agent’s expected payoff in the second period is thus the prior mean µ, no matter the

equilibrium effort level. Therefore opt-in is (weakly) optimal as part of an equilibrium

strategy if and only if the agent’s equilibrium action a∗ satisfies

R + µ− C(a∗) ≥ 0.

14An implication of Lemma 1 is that as N → ∞, the agent’s expectation of the principal’s forecast

converges to the agent’s own expectation of his type; that is, µ. This implication has the flavor of the classic

Blackwell and Dubins (1962) result on merging of opinions, which says that if two agents have different prior

beliefs which are absolutely continuous with respect to one another, then given sufficient information, their

posterior beliefs must converge. The difference is that the Blackwell and Dubins (1962) result demonstrates

almost-sure convergence, while we are interested in l1-convergence under a shifted measure—that is, whether

the agent’s expectation of the principal’s expectation converges to the agent’s own expectation given sufficient

data, where the agent and principal use different priors. Neither of these two notions of convergence directly

imply the other.
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We impose the following assumption, which guarantees that agents would find it optimal to

opt-in when no other agents are present in the segment. This restricts attention to settings

in which a functioning market existed prior to identification of linkages across consumers.

Assumption 7 (Individual Entry). R+ µ ≥ C(a∗(1)), where a∗(1) is the equilibrium effort

in the exogenous-entry game with a single agent (as defined in (2) with N = 1).

In light of Assumption 7, there exists no equilibrium (respecting the refinement intro-

duced in Section 2.5) featuring no entry. This is because in any no-entry equilibrium, an agent

deviating to entry and choosing effort a∗(1) would receive a payoff of R + µ− C(a∗(1)) > 0

given that the principal expects the agent to exert effort a∗(1) following such a deviation.

Our main results characterize how the equilibrium implications of quality and circum-

stance linkages differ:

Theorem 1. In the quality linkage model, there is a unique equilibrium for all population

sizes N . In this equilibrium, each agent opts-in and chooses effort a∗Q(N).

Theorem 2. In the circumstance linkage model, there is a unique equilibrium for all popu-

lation sizes N . There exists an N∗ ∈ {1, 2, ...} ∪ {∞} such that:

• If N ≤ N∗, each agent opts-in and chooses effort a∗C(N),

• If N > N∗, each agent opts-in with probability p(N) ∈ (0, 1) and chooses effort

a∗∗ ∈ [a∗C(N∗), a∗C(N∗ + 1)). The effort level a∗∗ is independent of N , while the opt-in

probability p(N) is strictly decreasing in N and satisfies limN→∞ p(N) = 0.

The threshold N∗ is increasing in R, and is finite for all R sufficiently small.

The equilibrium actions characterized in Theorems 1 and 2 are depicted in Figure 2.

When the segment size is small, Assumption 7 ensures that opting-in is strictly profitable

for all agents in each model, and so the equilibrium effort levels a∗Q(N) and a∗C(N) are the

same as in the previous section. Thus, the equilibrium effort levels inherit the properties

described in Proposition 1. As the population size grows, opting-in becomes increasingly

attractive in the quality linkage model, since equilibrium effort a∗Q(N) decreases in N . As a

result, all agents participate no matter how large the population. But in the circumstance

linkage model, effort a∗C(N) increases in N and so participation becomes less attractive as the

population of entering agents grows. If N is large enough that the total cost of participation

C[a∗(N)] exceeds the expected reward R+µ, then full participation cannot be an equilibrium.
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Figure 2: The relationship between population size and equilibrium effort

We let N∗ denote the largest N for which R+ µ ≥ C[a∗(N)]. Then for any N > N∗, agents

randomize over entry in equilibrium.15

In this mixed equilibrium, agents must enter at a rate p(N) < 1 and exert an effort level

a∗∗ so as to satisfy two conditions:

1. Agents are indifferent over entry:

R + µ = C(a∗∗),

2. The marginal value of distortion equals its marginal cost:

E
[
MV (1 + Ñ)

∣∣∣ Ñ ∼ Bin(N − 1, p(N))
]

= C ′(a∗∗)

The entry condition pins down the action level a∗∗, which is independent of the population

size. The entry rate p(N) is then pinned down by the requirement that the expected marginal

value of effort must equal the marginal cost when agents who enter take action level a∗∗.

Since the expected marginal value of effort rises with the number of entering agents, p(N)

must drop with N to equilibrate marginal values and costs.16

15If the opt-in reward R is large enough, it may be that N∗ =∞ and all agents enter no matter how large

the population, as even the limiting effort level for very large populations is worth incurring for the large

entry reward. The value N∗ is finite whenever R is not too large.
16In general, this probability p(N) is not the same as the probability p∗(N) satisfying

MV (1 + p∗(N) · (N − 1)) = C ′(a∗∗), i.e. the opt-in probability such that equilibrium effort is a∗∗ given

deterministic entry of p∗(N) · (N − 1) other agents. In the Gaussian setting (and we suspect more gener-

ally) MV (N) is a concave function of N , implying that uncertainty in the number of entrants increases the

equilibrium rate of entry.
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4.2 Welfare Implications

We now analyze the welfare implications of the equilibrium outcomes derived in Section 4.1.

Following Holmström (1982a), we consider outcomes to represent socially valuable surplus

generated by service provision, while effort is socially costly. In addition, we consider the

forecast E[θi | Sj, j ∈ Iopt-in] to reflect surplus that the agent receives, e.g. through future

service. These factors contribute to social surplus only for participating agents, since surplus

is not generated by agents who opt-out. Meanwhile, we take the reward R to represent a

monetary transfer, which affects the split of surplus but not the amount generated.17

For any symmetric strategy profile (p, a) chosen by a population of N agents, where p is

the opt-in probability and a is an action choice, we define total expected welfare to be

W (p, a,N) = E

[
N∑
i=1

1(opt-in)× [Si + E (θi | Sj, j ∈ Iopt-in)− C(a)]

]
= pN · (a+ 2µ− C(a)). (4)

Total welfare is divided between the principal and agents as follows: the principal receives

the outcome Si and pays a reward R to every participating agent i, yielding expected profits

Π(p, a,N) = pN · (a+ µ−R).

Meanwhile every participating agent receives reward R and the reputational payoff E[θi |
Sj, j ∈ Iopt-in], and incurs effort cost C(a). Total consumer welfare is therefore

CS(p, a,N) = pN · (R + µ− C(a)).

Note that W (p, a,N) = Π(p, a,N) + CS(p, a,N), so all surplus goes to either the principal

or one of the agents.

We consider how each of these welfare measures compares to a “no data linkages” bench-

mark in which the principal does not observe the linkage across agents, and uses only agent

i’s outcome Si to predict their type θi. That is, the principal’s forecast is E(θi | Si). In

equilibrium in this benchmark, each agent opts-in (by Assumption 7), and chooses effort

level

aNDL ≡ a∗(1) (5)

i.e. the action that would be taken for a population of size 1. (Recall that this action is the

same for both linkage models.) In a similar spirit to Assumption 7, we assume that serving

agents is profitable absent a linkage:

17In Section 6.3 we consider how results change if improved prediction also contributes to social welfare.
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Assumption 8 (Profitable market). a∗(1) + µ > R.

This assumption ensures that a functioning market existed prior to linkages becoming avail-

able, and that the principal would not prefer to drop out rather than serve the market.

4.2.1 Consumer welfare

Consumer welfare depends only on the action each agent is induced to take upon entry,

and not on equilibrium entry rates. This is because agents randomize over entry only when

opting-in and -out yield the same payoff. So consumer welfare can be computed as if every

agent entered and exerted the equilibrium effort level, and this welfare is declining in effort.

Therefore consumer welfare drops under any quality linkage and rises under any circumstance

linkage, no matter the population size.

4.2.2 Principal profits

Principal profits are rising in effort, and also in the participation rate whenever per-agent

profits are positive. When agents within a segment have correlated quality, Theorem 1

indicates that use of the linkage for prediction (increasing the effective population size from

1 to N) will lead to depressed effort by agents without affecting participation, thus reducing

firm profits relative to the no-linkage benchmark. Firms may therefore prefer to commit not

to use big data analytics for forecasting outcomes based on such linkages.

On the other hand, when agents experience shared circumstances (that affect current-

period outcomes but are not reflective of underlying quality), Theorem 2 shows that use of

the linkage will boost agent effort but may reduce participation. For small segments, firms

benefit from the effort boost, and the linkage is profitable. However, for sufficiently large

segments the effect of dampened participation outweighs this benefit (since p(N) → 0 as

N →∞ but effort levels are bounded), and the linkage becomes unprofitable.

4.2.3 Social surplus

While firm profits are always increasing in effort and consumer welfare is always decreasing,

social welfare is non-monotone in effort. Each participating agent generates a surplus of

a+ 2µ− C(a),

which is maximized at the unique effort level aFB satisfying C ′(aFB) = 1. Since µ > 0,

surplus is strictly positive at this effort level, and so aggregate surplus is maximized when

all agents enter and exert effort aFB.
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We first show that equilibrium actions are below the first-best action in both models no

matter how many agents participate. This result implies that, fixing the level of participation,

linkages which boost effort improve social welfare.

Lemma 2. For every population size N , equilibrium effort is inefficiently low in both models:

a∗(N) < aFB.

As N increases:

• Effort in the circumstance linkage model a∗C(N) becomes more efficient but is bounded

below the efficient level: limN→∞ a
∗
C(N) < aFB.

• Effort in the quality linkage model a∗Q(N) becomes less efficient.

Recall that the equilibrium action a∗ satisfies C ′(a∗) = MV (N) while the first-best action

aFB satisfies C ′(aFB) = 1. The lemma is proved by demonstrating that MV (N) < 1 in both

models for all N . Intuitively, some effort is always dissipated, since the realization of the

outcome is noisy, so the principal’s forecast of θi moves less than 1-to-1 with the outcome.

This result generalizes a classic result from Holmström (1982a), which demonstrated that

a∗(1) < aFB in the case of Gaussian random variables.

The following proposition builds on the previous result and compares WNDL(N), WQ(N),

and WC(N), which respectively denote social welfare under the no-linkage benchmark, a

quality linkage, and a circumstance linkage.

Proposition 2. For every N > 1,

WQ(N) < WNDL(N).

There exists a population threshold N such that

WNDL(N) < WC(N)

for all 1 < N < N while

WC(N) < WNDL(N)

for all N > N .

For all populations with N ≥ 2 agents, quality linkages lead to a reduction in social

welfare. This follows directly from Lemma 2: Since there is full entry in the no-data linkages

benchmark as well as in the quality linkage equilibrium, the welfare comparison is completely
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determined by the relative sizes of the equilibrium actions, which are ranked aNDL(N) =

a∗Q(1) > a∗Q(N).

In contrast, under a circumstance linkage, the comparison depends on the population

size N . In small populations, all agents opt-in, so again the action comparison completely

determines welfare. Since aNDL(N) = a∗C(1) < a∗C(N), data linkages leads to an improve-

ment in social welfare. In large populations, depressed entry dominates and results in lower

social welfare despite increased effort levels from participating agents. (Both regimes exist

whenever the population threshold N∗ above which agents randomize over entry is finite and

larger than 1.) These results suggest that a social planner should restrict use of big data

to identify linkages over quality while encouraging use of big data to identify linkages over

circumstances that are shared by small populations.

5 Data Sharing, Markets, and Consumer Welfare

So far we have considered the implications of data linkages for a single firm which uses data

to inform predictions about consumer behavior. This focus allowed us to isolate the direct

effect of data linkages on consumer effort and participation. When multiple firms compete

for consumers, additional important questions regarding behavior and welfare arise which

we can leverage our model to answer.

In this section we address a recent policy debate regarding data sharing. In many markets,

a consumer’s business brings with it data on the consumer’s behavior, which by default is

privately owned by the organization with which the consumer interacts. Recently, proposals

have been made to form so-called “data commons” to make this data freely accessible to all

organizations in the market. For example, the European Commission has begun exploring

legislative action that would support “business-to-business data sharing,” and new platforms

for data sharing, such as Data Republic, permit organizations to share anonymised data

with one another.18 We study here the impact of such data sharing on effort provision and

consumer welfare.19

To do this, we extend our model to K ≥ 2 firms who compete over N consumers according

to the following timeline:

t = −1 : Each firm k simultaneously chooses a reward Rk. These transfers are publicly

18See https://www.zdnet.com/article/data-republic-facilitates-diplomatic-data-sharing-on-aws/.
19Our focus on consumer welfare mirrors recent policy discussions regarding data collection and sharing,

which have been mostly concerned with the impact of these activities on consumers. Our main findings

would be similar if we instead analyzed total social surplus. In particular, an analog of Proposition 3 holds

when considering the impact of data sharing on social surplus.
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observed.

t = 0 : Each consumer chooses a firm to participate with (if any).

t = 1 : Participating consumers choose what level of effort to exert, without observing

the participation decisions of other consumers.

t = 2 : Participating consumers receive their firm’s forecast of their type.

Payoffs and consumer welfare are as in the single-principal model.

We contrast a proprietary data regime, under which each firm observes only the outcomes

of the consumers who interact with them, with a data sharing regime, under which the

outcomes of all participating agents are shared across firms. These settings differ only in the

information that firms have access to when making their forecasts at time t = 2. We assume

that whether data is proprietary or shared is common knowledge.

As our solution concept, we use subgame-perfect Nash equilibria in pure strategies (which

we henceforth refer to simply as an equilibrium).20 Throughout, we maintain a restriction on

out-of-equilibrium beliefs analogous to the refinement imposed in the single-principal model:

at any information set in which agent i participates with principal k, principal k expects

agent i to choose the action ai satisfying

MV
(
1 +Nk

−i
)

= C ′(ai),

where Nk
−i is the number of agents j 6= i who participate with principal k under their equi-

librium strategies. This refinement ensures that each principal expects every participating

agent i to choose the equilibrium action from a game with exogenous participation of 1+Nk
−i

agents, even when participation by agent i is out-of-equilibrium.

We do not provide a full characterization of the equilibrium set, as there exists a large

set of equilibria under proprietary data.21 Despite this fact, we can show that the shift

from proprietary data to data sharing improves consumer welfare, no matter the equilibrium

selection or the nature of linkages between consumers.

20This restriction differs slightly from the one we used in the single-principal model: we require that agents

not mix over participation, but we allow agents to make asymmetric participation decisions. Imposing these

restrictions in the single-principal model would not substantively impact the analysis. In particular, equilibria

would be identical except in the circumstance linkage model with N > N∗. In that regime there exist pure-

strategy equilibria with asymmetric entry decisions, which exhibit the same comparative statics in effort and

participation rates as the symmetric mixed equilibrium.
21For a given set of transfers, strategic substitutibility or complementarity between consumer participation

decisions allow for existence of a multiplicity of participation patterns. The selection of participation patterns

across subgames can then support a variety of equilibrium rewards by firms.
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Proposition 3. In both the quality linkage and circumstance linkage models, consumer wel-

fare is higher under data sharing than under proprietary data.

This result arises from the interplay of two forces—how data sharing impacts the total

surplus generated from the market via participation and effort, and how it changes the split

of this surplus between consumers and firms. Under data sharing, firms are identical to

consumers, since all firms have access to the same outcomes regardless of the pattern of

participation. This forces firm profits to zero and transfers all surplus to consumers. On

the other hand, data sharing has a potentially ambiguous impact on total surplus. Total

surplus is rising in effort,22 and effort is rising in the number of participating agents under

circumstance linkages, but falling under quality linkages (Proposition 1). So while consumer

welfare clearly rises in the circumstance linkage models, the result under quality linkages is

more subtle.

We establish the result for the quality linkage model by proving that under proprietary

data, in every equilibrium agents endogenously choose to interact with a single firm (Lemma

E.2). This means that data sharing does not increase the effective population size, and

aggregate surplus is the same with or without data sharing. The impact of data sharing on

consumer welfare is then completely determined by the split of surplus, which we already

observed is maximized for consumers under data sharing. So consumer welfare must be at

least as large under this regime.

Proposition 3 indicates that under either kind of linkage across consumer outcomes, the

introduction of data sharing is welfare-improving for consumers. This result does not imply

that under data sharing, the identification of linkages always increases consumer welfare.

As noted in Section 4.2, introduction of a quality linkage increases consumer welfare, but

introduction of a circumstance linkage diminishes it. Thus, data sharing (the pooling of

information across competitive firms) and data linkages (the identification of relationships

among consumers that make one consumer’s outcomes predictive of another’s), while related,

play very different roles: Data linkages determine how the size of a firm’s consumer base

impacts the effort that each consumer exerts; while data sharing determines the pattern of

participation across the firms and how surplus is divided between consumers and firms. The

results of this section reveal that data linkages and data sharing interact in important ways.

22More precisely, total surplus is rising in effort on the interval [0, aFB ], where aFB is the first-best action

satisfying C ′(aFB) = 1. We showed in Lemma 2 that equilibrium actions are bounded below first-best.

Thus, on the relevant domain, total surplus is rising in effort.
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6 Extensions

6.1 Robustness to Uncertainty

We have so far supposed that consumers know the total population size N and the structure

of correlation across the outcomes Si. In practice, consumers may not have this kind of

detailed knowledge about their segment. We show next that our qualitative findings remain

unchanged when agents have uncertainty about the strength of correlation across outcomes

and about the population size, so long as agents know whether consumers in their segment

are related by quality or circumstance.

Formally, suppose that in the quality linkage model agents may be grouped into any of

K “quality linkage” segments, each of which corresponds to a different correlation structure

across types; that is, θ ∼ F k
θ
, θ⊥i ∼ F k

θ⊥ , and εi ∼ F k
ε for segment k = 1, ..., K. All agents

share a common belief about the probability that they are in each segment. (The case of

K “circumstance linkage” segments may be similarly defined.) At the same time, suppose

that the number of agents N is a random variable, potentially dependent on the segment,

with distribution N ∼ Gk
γ, where γ is a scale factor known to all agents such that for each

segment k, Gk
γ first-order stochastically dominates Gk

γ′ whenever γ > γ′.

Under this specification, the first-order condition characterizing optimal effort when

agents enter with probability p may be written

E
[
MV (1 + Ñ , k)

]
= C ′(a∗),

where MV (N ′, k) is the marginal value of distortion when N ′ agents enter and the con-

sumer is part of segment k, Ñ ∼ Bin(N − 1, p), and N and k are both random variables.

Note that for each segment k, MV (N, k) changes with N just as in Lemma 1. Then condi-

tional on the segment k, E[MV (1 + Ñ , k) | k] decreases with p and γ in the quality linkage

model, and increases with p and γ in the circumstance linkage model. Since this property

holds for every segment k, it must also hold for the unconditional expected marginal value

E
[
MV (1 + Ñ , k)

]
.

The reasoning of the previous paragraph yields the conclusion that the expected marginal

value of distortion moves with the population scale factor γ and the entry rate p just as it

does with respect to N and p in the baseline model. So the following corollary holds:

Corollary. In the model with uncertainty over segment and population size, equilibrium

effort and participation rates exhibit the same comparative statics in γ as with respect to N

in Theorems 1 and 2.
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That is, an increase in γ—which shifts up the distribution for the number of participants no

matter the realized segment—leads to higher effort under circumstance linkages and lower

effort under quality linkage.23

6.2 Multiple Linkages

So far we have conducted our analysis supposing that each consumer is identified as part of

a single segment. In practice a consumer may belong to several demographic and lifestyle

segments, each of which may be used by an organization to improve predictions of the

consumer’s type. We now show that aggregation of outcomes from multiple segments for

prediction creates a natural amplification of the effort effect identified in Proposition 1:

as the number of identifiable quality linkages for a consumer increases (e.g. because the

organization has purchased data about additional covariates), his effort declines; and as the

number of identifiable circumstance linkages for a consumer increases, his effort rises.

To formally model variation in the number of segments, we focus on the effort exerted by

a single agent, who we refer to as agent 0. We decompose the agent’s outcome S0 as the sum

of a number of components, some common and some idiosyncratic. In the quality linkage

context, we write

S0 = a0 +
J∑
j=1

θ
j

+ θ⊥0 + ε0,

where θ⊥0 and ε0 are idiosyncratic persistent and transient components of the outcome. Each

θ
j

is a persistent component of the outcome which is held in common with a segment j

consisting of Nj agents. The outcomes of agents in segment j are observed by the principal,

and each agent i in this segment has an outcome distributed as

Sji = aji + θ
j

+ θ⊥,ji + εji

where θ⊥,ji and εji are idiosyncratic.24 As usual, the principal wishes to predict θ0 =
∑J

j=1 θ
j
+

θ⊥i . Analogously, in the circumstance linkage model we decompose the agent’s outcome as

S0 = a0 + θ0 +
J∑
j=1

εj + ε⊥0 ,

23The threshold N∗ at which participation rates begin to drop in the “circumstance linkage” case would,

however, depend on details of their beliefs about the segment.
24For simplicity, we do not model agents in other groups as having multiple linkages. Extending the model

to allow such linkages would not impact results in any way so long as no group j is linked to another group

j′ also linked to agent 0.
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where each agent i from group j has an outcome distributed as

Sji = aji + θji + εj + ε⊥,ji .

As in the baseline model, all type and shock terms are mutually independent. In each model

we impose analogs of the assumptions in Section 2.6 on the relevant densities and posterior

means. Participation of all agents is exogenously given.

Proposition 4 below demonstrates a comparative static in the number of linkages observed

by the principal. A principal who observes m linkages understands the correlation structure

of each θ
j

(or εj) with the segment-j outcomes (Sj1, ..., S
j
Nj

) for j = 1, ...,m, but believes that

for j = m+ 1, ..., J each θ
j

(or εj) term is idiosyncratic. This could, for example, correspond

to the principal knowing which of their consumers are charitable givers, but not knowing

which consumers are single parents. Let a†Q(m) be agent 0’s equilibrium action when the

principal observes m linkages in the quality linkage model, with a†C(m) similarly defined for

the circumstance linkage model. The following result characterizes how agent 0’s equilibrium

action changes with m.

Proposition 4. a†Q(m) is strictly decreasing in m, while a†C(m) is strictly increasing in m.

For simplicity we have restricted attention to multiple linkages of the same type. However,

the basic logic of Proposition 4 holds even when the agent may be linked to other segments

via both quality and circumstance linkages. Given any initial set of linkages (each of which

may be either a quality or circumstance linkage), identification of an additional quality

linkage decreases equilibrium effort, while identification of an additional circumstance linkage

increases equilibrium effort. (We omit the proof, which follows straightforwardly along the

lines of the proof of Proposition 4.)

6.3 Forecast Prediction and Welfare

So far we have considered prediction of an agent’s type relevant for social welfare only insofar

as it generates incentives for the agent to exert effort to influence the prediction. However,

in some applications, better tailoring of a service level to fit the agent’s type may involve

changes in allocation which improve welfare. For instance, a bank extending loans to small

businesses may increase total output if it is able to more accurately match loan amounts to

the profitability of each business.

When better prediction improves welfare, the social welfare results of Proposition 2 are

qualitatively the same for circumstance linkages, but may change under a quality linkage.

Identification of a circumstance linkage now has two positive forces on per-agent welfare,
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improving both the effort exerted and the forecast precision of each participating agent’s

type (given a fixed entry rate). Since the participation rate still drops to zero when the

population size becomes large, circumstance linkages improve welfare for small populations

but decrease it for large populations, identical to the baseline model.

Under a quality linkage, the impact of the linkage on effort and prediction accuracy have

countervailing effects on welfare. For large populations the total effect is determined by

the comparison between drop of effort from a∗(1) to limN→∞ a
∗(N) versus the gains from

accurate prediction of θ. When the value to improved prediction is small, quality linkages

decrease welfare for large populations (as in our baseline model), while the opposite is true

when the value to improved prediction is large.

7 Conclusion

As firms and governments move towards collecting large datasets of consumer transactions

and behavior as inputs to decision-making, the question of whether and how to regulate the

usage of consumer data has emerged as an important policy question. Recent regulations,

such as the European Union’s General Data Protection Regulation (GDPR), have focused

on protecting consumers’ privacy and improving transparency regarding what kind of data

is being collected. An important complementary consideration when designing regulations

is how data impacts social and economic behaviors.

In the present paper, we analyze one such impact—the effect that consumer segmenta-

tions identified by novel datasets have on consumer incentives for socially valuable effort.

We find that the behavioral and welfare consequences depend crucially on how consumers

in a segment are linked. These results suggest that regulations should take into account not

just whether individual data is informative about other consumers, but whether that data

is primarily useful for inferring quality or denoising observations.

In practice, the usage of a particular dataset is likely to differ across domains, and may

have as much to do with the underlying correlation structure of the data as it does with

the algorithms used to aggregate that data. We hope that even the reduced-form models of

data aggregation that we have considered here make clear that regulation of the “amount”

of data is too crude for many objectives—the structure of that data, and how it is used for

prediction, can have important consequences.

Finally, our analysis in Section 5 of the interaction between market forces and data

linkages points to another interesting avenue for subsequent work. Since participation is a

strategic complement under quality linkages but a strategic substitute under circumstance

linkages, the former encourages the emergence of a single firm that serves all consumers,
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while the latter discourages it. This suggests that identification of linkages across consumers

affects not just those consumers and their behavior, but can also have important implications

for market structure and antitrust policy.
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Appendix

The appendices are structured as follows: Appendix A reports a list of actual consumer

data segmentations sold by data brokers. Appendix B establishes technical results used in

the proofs of the results in the body of the paper. The remaining appendices present proofs

of all results in the body of the paper.
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A Consumer Segments Provided by Data Brokers

In this appendix we produce a list of examples of actual consumer segmentations produced

by data brokers, as reported in Federal Trade Commission (2014) and Senate Committee on

Commerce, Science, and Transportation (2013).

Table 1: Examples of Consumer Segments

Quality Linkage Circumstance Linkage

Outdoor/Hunting & Shooting Sending a Kid to College

Santa Fe/Native American Lifestyle Expectant Parents

Media Channel Usage - Daytime TV Buying a Home

Bible Lifestyle Getting Married

New Age/Organic Lifestyle Dieters

Plus-size Apparel Families with Newborns

Biker/Hell’s Angels Hard Times

Leans Left New Mover/Renter/Owner

Fitness Enthusiast Death in the Family

Working-class Mom

Thrifty Elders

Health & Wellness Interest

Very Spartan

Small Town Shallow Pockets

Established Elite

Frugal Families

McMansions & Minivans

We have informally categorized segments according to whether they might represent a

quality linkage or a circumstance linkage; in practice, this categorization would depend also

on the time frame for forecasting. For example, a segment of “consumers with children in

college” during a particular observation cycle is a quality linkage segment while the children

remain in college, but a circumstance linkage segment once the children have graduated.

Besides these named categories, data brokers provide also segmentation based on numer-

ous demographic, health, interest, financial, and social media indicators, including: miles

traveled in the last 4 weeks, number of whiskey drinks consumed in the past 30 days, whether

the individual or household is a pet owner, whether the individual donates to charitable

causes, whether the individual enjoys reading romance novels, whether the individual par-

ticipates in sweepstakes or contests, whether the individual suffers from allergies, whether
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the individual is a member of five or more social networks, whether individual is a heavy

Twitter user, among countless others.

B Preliminary Results

In this section we establish a number of first-order stochastic dominance and monotonicity

results used in proofs of results in the body of the paper. Throughout this appendix, fix a

segment size N and assume that all agents opt in. (All results extend immediately to any

set of agents I ⊂ {1, ..., N ′} of size N entering from a segment of size N ′ > N.) Let GM
i

denote the distribution function of agent i’s outcome in model M ∈ {Q,C}, with M = Q

the quality linkage model and M = C the circumstance linkage model. We will write gMi

for the density function associated with GM
i . For the joint distribution of the outcomes of

agents i through j, we will write GM
i:j,

B.1 Smooth MLRP

A classic result of Milgrom (1981) demonstrates that if a signal satisfies the monotone likeli-

hood ratio property (MLRP), then posterior beliefs can be ordered by first-order stochastic

dominance. For our results we desire not just that the posterior distribution is strictly de-

creasing in the conditioning variable, but that it be differentiable and that the derivative be

strictly negative. We define a smooth form of the MLRP sufficient to achieve this result.

Definition B.1 (Smooth MLRP). A family of conditional density functions {f(x | y)}y∈Y
on R for some Y ⊂ R satisfies the smooth monotone likelihood ratio property (SMLRP) in

y if:

• f(x | y) is a strictly positive, C1,0 function25 of (x, y),

• f(x | y) and ∂
∂x
f(x | y) are both uniformly bounded for all (x, y),

• The likelihood ratio function

`(x; y, y′) ≡ f(x | y)

f(x | y′)

satisfies ∂`
∂x

(x; y, y′) > 0 for every x and y > y′.

25A function f : R2 → R lies in the class C1,0 if it is continuous everywhere and ∂f
∂x (x, y) exists and is

continuous everywhere.
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This definition is a strengthening of the MLRP definition of Milgrom (1981). It requires

not only that the likelihood ratio function be everywhere strictly increasing, but that it be

differentiable with the derivative strictly positive. It also imposes regularity conditions on

the likelihood and its derivative which will be necessary for the desired FOSD result to hold.

One useful identity involving the likelihood ratio function is

∂`

∂x
(x; y, y′) =

f(x|y)

f(x|y′)

(
∂

∂x
log f(x|y)− ∂

∂x
log f(x|y′)

)
.

Thus the condition on the likelihood ratio function imposed by SMLRP is equivalent to the

condition that ∂
∂x

log f(x|y) be a strictly increasing function of y for every x.

The following lemma establishes a very important class of random variables satisfying

SMLRP.

Lemma B.1. Let X and Y be two independent random variables with density functions fX

and fY which are each C1, strictly positive, strictly log-concave functions, and which each

have bounded first derivative. Let Z = k + X + Y for a constant k. Then the conditional

densities fZ|X(z | x) and fZ|Y (z | y) satisfy the SMLRP in x and y, respectively.

Proof. First take k = 0. We prove the result for fZ|X , with the result for fZ|Y following

symmetrically. Note that fZ|X(z | x) = fY (z − x). By Lemma O.1, fY is bounded. This

result along with the additional assumptions on fY ensure that fZ|X satisfies the first two

conditions of SMLRP. As for the likelihood ratio condition, it is sufficient to establish that
∂
∂z

log fZ|X(z | x) = ∂
∂z

log fY (z − x) is strictly increasing in x for each z. But since fY is

strictly log-concave, ∂
∂z

log fY (z−x) > ∂
∂z

log fY (z−x′) whenever z−x < z−x′, i.e. whenever

x > x′. So the likelihood ratio condition is satisfied as well.

Now suppose k 6= 0. Then the result applied to the random variable X + Y establishes

that fX+Y |X(z | x) and fX+Y |Y (z | y) satisfy the SMLRP in x and y, respectively. As

fZ|X(z | x) = fX+Y |X(z − k | x) and fZ|Y (z | y) = fX+Y |Y (z − k | y), and since each of the

conditions of the SMLRP are invariant to shifts in the first argument, these densities satisfy

the SMLRP as well.

The following lemma is the main result of this appendix. It strengthens the FOSD

result of Milgrom (1981) to ensure that the posterior distribution function is smooth and

has a strictly negative derivative wrt the conditioning variable. The sufficient conditions are

that the likelihood function satisfy SMLRP and that the density function of the unobserved

variable be continuous. The proof here establishes the sign of the derivative, with the proof

of smoothness relegated to Lemma O.2 in the Online Appendix.
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Lemma B.2 (Smooth FOSD). Let X and Y be two random variables for which the density

g(y) for Y and the conditional densities f(x | y) for X | Y exist. Suppose that f(x | y)

satisfies the SMLRP in y and g(y) is continuous. Then H(x, y) ≡ Pr(Y ≤ y | X = x) is a

C1 function of (x, y) and ∂H
∂x

(x, y) < 0 everywhere.

Proof. Lemma O.2 establishes that H is a C1 function. To sign its derivative wrt x, note

that the derivative of Ĥ(x, y) ≡ H(x, y)−1 − 1 may manipulated to obtain the form

∂Ĥ

∂x
(x, y) =

(∫ y

−∞
f(x | y′′) dG(y′′)

)−2

×
∫ ∞
y

dG(y′)

∫ y

−∞
dG(y′′)

(
f(x | y′′) ∂

∂x
f(x | y′)− f(x | y′) ∂

∂x
f(x | y′′)

)
.

(See the proof of Lemma O.2 for a detailed derivation.) The integrand may be rewritten

f(x | y′′) ∂
∂x
f(x | y′)− f(x | y′) ∂

∂x
f(x | y′′)

= f(x | y′′)2

(
∂
∂x
f(x | y′)
f(x | y′′) −

f(x | y′) ∂
∂x
f(x | y′′)

f(x | y′′)2

)
= f(x | y′′)2 ∂

∂x
`(x; y′, y′′).

Now, as y′ > y > y′′ on the interior of the domain of integration, ∂
∂x
`(x; y′, y′′) > 0 everywhere

and so ∂Ĥ
∂x

(x, y) > 0. Therefore

∂H

∂x
(x, y) = −

∂Ĥ
∂x

(x, y)

(Ĥ(x, y) + 1)2
< 0,

as desired.

B.2 SFOSD of Posterior Distributions

We now develop smooth first-order stochastic dominance results regarding posterior distribu-

tions of various latent variables as outcomes shift. These results rely heavily on the SFOSD

result established in Lemma B.2. Application of that lemma requires checking smoothness

and boundedness conditions of the underlying likelihood functions, which are straightforward

but tedious in our environment. We relegate proofs of these regularity conditions to Online

Appendix O.1.

The following result establishes that as an agent’s outcome increases, inferences about

the common component of the outcome increase as well.

Lemma B.3. For agent i ∈ {1, ..., N} and outcome-action profile (S−i, a) :
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• FQ

θ
(θ | S; a) is a C1 function of (Si, θ) satisfying ∂

∂Si
FQ

θ
(θ | S; a) < 0 for all (Si, θ),

• FC
ε (ε | S; a) is a C1 function of (Si, ε) satisfying ∂

∂Si
FC
ε (ε | S; a) < 0 for all (Si, ε),

Proof. For convenience, we suppress the dependence of distributions on a in this proof. Fix

S−i. We will prove the first result, with the second following from nearly identical work by

permuting the roles of θ and ε.

The result follows from Lemma B.2 provided that 1) fQ
θ

(θ | S−i) is continuous wrt θ, and

2) gQi (Si | θ,S−i) satisfies SMLRP with respect to θ. As for the first condition, Bayes’ rule

gives

fQ
θ

(θ | S−i) =
fθ(θ)

∏
j 6=i gj(Sj | θ)

g−i(S−i)
=
fθ(θ)

∏
j 6=i fθ⊥+ε(Sj − θ − aj)
g−i(S−i)

.

Then as fθ and fθ⊥+ε are both continuous functions, fQ
θ

(θ | S−i) is a continuous function of

θ. It therefore suffices to establish condition 2.

Note that conditional on θ, Si is independent of S−i in the quality linkage model; so

gQi (Si | θ,S−i) = gQi (Si | θ). So it suffices to establish that gQi (Si | θ) satisfies SMLRP with

respect to θ. Recall that in the quality linkage model, Si = ai + θ + θ⊥i + εi, where by

assumption θ, θ⊥i and εi all have C1, strictly positive, strictly log-concave density functions

with bounded derivatives. Lemma O.1 ensures that these densities are additionally bounded.

These properties are all inherited by the density function of the sum θ⊥i +εi, which is just the

convolution of the density functions for θ⊥i and εi. Lemma B.1 then implies that gQi (Si | θ)
satisfies SMLRP with respect to θ, as desired.

The following lemma establishes smooth stochastic dominance of a posterior distribution

arising in analysis of the quality linkage model. While the property is the same one estab-

lished by Lemma B.2, the boundedness conditions of that lemma cannot be guaranteed and

so slightly different techniques are required to reach the result.

Lemma B.4. For every outcome-action profile (S1, a1) and type θ1, the function FQ
θ1

(θ1 |
S1, θ; a1) is continuously differentiable wrt θ everywhere, and ∂

∂θ
FQ
θ1

(θ1 | S1, θ; a1) < 0.

Proof. For convenience, we suppress the dependence of distributions on a1 in this proof. By

Bayes’ rule,

FQ
θ1

(t | S1, θ) =

∫ t
−∞ fθ(θ | θ1 = t′, S1)fθ1(t

′ | S1) dt′∫∞
−∞ fθ(θ | θ1 = t′, S1)fθ1(t

′ | S1) dt′
.

Note that fQ
θ

(θ | θ1, S1) is independent of S1, as (θ1, S1) contains the same information as

(θ1, ε1) and θ is independent of ε1. So fQ
θ

(θ | θ1, S1) = fQ
θ

(θ | θ1). Another application of
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Bayes’ rule reveals that

fQ
θ

(θ | θ1) =
fQθ1(θ1 | θ)fθ(θ)

fθ(θ1)
=
fθ⊥(θ1 − θ)fθ(θ)

fθ(θ1)
,

while

fθ1(θ1 | S1) =
g1(S1 | θ1)fθ(θ1)

g(S1)
=
fε(S1 − θ1 − a1)fθ(θ1)

g(S1)
.

Inserting back into the previous expression for FQ
θ1=t(θ1 | S1, θ) yields

FQ
θ1

(t | S1, θ) =

∫ t
−∞ fθ⊥(t′ − θ)fε(S1 − t′ − a1) dt′∫∞
−∞ fθ⊥(t′ − θ)fε(S1 − t′ − a1) dt′

.

Using the change of variables t′′ = S1 − t′ − a1 yields

FQ
θ1

(t | S1, θ) =

∫∞
S1−t−a1 fθ⊥(S1 − a1 − θ − t′′)dFε(t′′)∫∞
−∞ fθ⊥(S1 − a1 − θ − t′′)dFε(t′′)

.

Now, as f ′
θ⊥ exists and is bounded, the Leibniz integral rule ensures that derivatives of the

numerator and denominator wrt θ may be moved inside the integral sign. So FQ
θ1

(t | S1, θ)

is differentiable wrt θ. And as f ′
θ⊥ is additionally continuous, the dominated convergence

theorem ensures that these derivatives are continuous. Meanwhile the numerator and de-

nominator themselves are each continuous in θ given that fθ⊥ is continuous and bounded.

Thus FQ
θ1

(θ1 | S1, θ) is continuously differentiable wrt θ.

To sign the derivative, we may equivalently sign

H(θ) ≡ FQ
θ1

(t | S1, θ)
−1 − 1 =

∫ S1−t−a1
−∞ fθ⊥(S1 − a1 − θ − t′)dFε(t′)∫∞
S1−t−a1 fθ⊥(S1 − a1 − θ − t′′)dFε(t′′)

.

Differentiating and re-arranging yields

H ′(θ) =

(∫ ∞
S1−t−a1

fθ⊥(S1 − a1 − θ − t′′)dFε(t′′)
)−2

×
∫ S1−t−a1

−∞
dFε(t

′)

∫ ∞
S1−t−a1

dFε(t
′′)

×
(
−fθ⊥(S1 − a1 − θ − t′′)f ′θ⊥(S1 − a1 − θ − t′)

+fθ⊥(S1 − a1 − θ − t′)f ′θ⊥(S1 − a1 − θ − t′′)
)
.

The integrand may be rewritten

− fθ⊥(S1 − a1 − θ − t′′)f ′θ⊥(S1 − a1 − θ − t′)
+ fθ⊥(S1 − a1 − θ − t′)f ′θ⊥(S1 − a1 − θ − t′′)

= fθ⊥(S1 − a1 − θ − t′′)fθ⊥(S1 − a1 − θ − t′)

×
(
−f

′
θ⊥(S1 − a1 − θ − t′)
fθ⊥(S1 − a1 − θ − t′)

+
f ′
θ⊥(S1 − a1 − θ − t′′)
fθ⊥(S1 − a1 − θ − t′′)

)
.

40



Note that everywhere on the domain of integration t′′ > t′, and so because fθ⊥ is strictly

log-concave,
f ′
θ⊥(S1 − a1 − θ − t′′)
fθ⊥(S1 − a1 − θ − t′′)

>
f ′
θ⊥(S1 − a1 − θ − t′)
fθ⊥(S1 − a1 − θ − t′)

.

Thus the integrand is strictly positive everywhere, meaning H ′(θ) > 0. In other words,

∂

∂θ
FQ
θ1

(θ1 | S1, θ) = − H ′(θ)

(H(θ) + 1)2
< 0,

as desired.

The following lemma establishes how inferences about one agent’s quality change as

another agent’s outcome changes. Note that the result depends critically on the model.

For simplicity, the result is stated in terms of inferences about agent 1’s type as agent N ’s

outcome shifts. By symmetry analogous results hold for any other pair of agents.

Lemma B.5. For every outcome-action profile (S−N , a),

∂

∂SN
FQ
θ1

(θ1 | S; a) < 0

and
∂

∂SN
FC
θ1

(θ1 | S; a) > 0

for every (θ1, SN).

Proof. For convenience, we suppress the dependence of distributions on a in this proof. Fix

S−N . Recall that Lemma O.4 established that FM
θ1

(θ1 | S) is a C1 function of (SN , θ1) for

each model M ∈ {Q,C}.
Consider first the quality linkage model. Then

FQ
θ1

(θ1 | S) =

∫ ∞
−∞

FQ
θ1

(θ1 | S, θ) dFQ

θ
(θ | S).

Conditional on θ, θ1 depends on S only through S1, so this can be written

FQ
θ1

(θ1 | S) =

∫ ∞
−∞

FQ
θ1

(θ1 | S1, θ) dF
Q

θ
(θ | S).

Lemma B.3 establishes that FQ

θ
(θ | S) is a C1 function of (SN , θ) satisfying ∂

∂SN
FQ

θ
(θ | S) < 0

everywhere. Then the function FQ

θ
(θ | S) − q is a C1 function of (SN , θ, q), with Jacobian

fQ
θ

(θ | S) wrt θ. By Bayes’ rule,

fQ
θ

(θ | S) =
fθ(θ)

∏N
i=1 gi(Si | θ)∫

dθ
′
fθ(θ

′
)
∏N

i=1 gi(Si | θ
′
)
.
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As gi(Si | θ) = fθ⊥+ε(Si − θ − ai) and fθ and fθ⊥+ε are both strictly positive, fQ
θ

(θ | S) > 0

everywhere. Therefore by the implicit function theorem there exists a C1 function φ(q, SN)

such that FQ

θ
(φ(q, SN) | S) = q for all (q, SN), and further that

∂φ

∂SN
(q, SN) = −

[
1

fQ
θ

(t | S)

∂

∂SN
FQ

θ
(t | S)

]
t=φ(q,SN )

> 0.

A change of variables allows FQ
θ1

(θ1 | S) to be integrated with respect to quantiles of θ using

the quantile function φ, yielding

FQ
θ1

(θ1 | S) =

∫ 1

0

FQ
θ1

(θ1 | S1, θ = φ(q, SN)) dq.

Then for any ∆ > 0,

− 1

∆

(
FQ
θ1

(θ1 | SN = sN + ∆,S−N)− FQ
θ1

(θ1 | SN = sN ,S−1)
)

=

∫ 1

0

− 1

∆

(
FQ
θ1

(θ1 | S1, θ = φ(q, sN + ∆))− FQ
θ1

(θ1 | S1, θ = φ(q, sN))
)
dq.

Since FQ
θ1

(θ1 | S) is differentiable wrt SN , the limit of both sides as ∆ ↓ 0 must be well-

defined. Lemma B.4 establishes that ∂
∂θ
FQ
θ1

(θ1 | S1, θ) exists, is continuous in θ, and is strictly

negative everywhere. Meanwhile we showed above that φ(q, SN) is strictly increasing in SN .

This means that the interior of the integrand is strictly positive for every q and ∆ > 0,

implying by Fatou’s lemma and the chain rule that

− ∂

∂SN
FQ
θ1

(θ1 | S) ≥ −
∫ 1

0

∂

∂θ
FQ
θ1

(θ1 | S1, θ)

∣∣∣∣
θ=φ(q,SN )

∂φ

∂SN
(q, SN) dq.

As the first term in the integrand is strictly negative while the second is strictly positive,

this inequality in turn implies
∂

∂SN
FQ
θ1

(θ1 | S) < 0.

Now consider the circumstance linkage model. Virtually all of the work for the quality

linkage model goes through with ε exchanged for θ, with the key exception that the existence,

continuity, and sign of ∂
∂ε
FC
θ1

(θ1 | S1, ε) must be established separately. (Lemma B.4 applies

only to the quality linkage model.) Note that FC
θ1

(θ1 | S1 = s, ε = t) = FC
θ1

(θ1 | S̃1 = s− t),
where S̃1 ≡ a1 + θ1 + ε⊥1 . It is therefore sufficient to analyze ∂

∂S̃1
FC
θ1

(θ1 | S̃1). Let g̃1(S̃1 | θ1)

be the density function of S̃1 conditional on θ1. We invoke Lemma B.1 to conclude that

g̃1(S̃1 | θ1) satisfies SMLRP in θ1. As additionally fθ(θ1) is continuous by assumption, Lemma

B.2 ensures that ∂

∂S̃1
FC
θ1

(θ1 | S̃1) exists, is continuous, and is strictly negative everywhere.

Thus ∂
∂ε
FC
θ1

(θ1 | S1, ε) exists, is continuous, and is strictly positive everywhere.
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In light of this result, the final steps of the proof from the quality linkage case adapted

to the circumstance linkages model show that

1

∆

(
FC
θ1

(θ1 | SN = sN + ∆,S−N)− FC
θ1

(θ1 | SN = sN ,S−1)
)

=

∫ 1

0

1

∆

(
FC
θ1

(θ1 | S1, ε = φ(q, sN + ∆))− FC
θ1

(θ1 | S1, ε = φ(q, sN))
)
dq,

where the interior of the right-hand side is strictly positive for all ∆ > 0. Then by Fatou’s

lemma and the chain rule

∂

∂SN
FC
θ1

(θ1 | S) ≥
∫ 1

0

∂

∂ε
FQ
θ1

(θ1 | S1, ε)

∣∣∣∣
ε=φ(q,SN )

∂φ

∂SN
(q, SN) dq > 0.

B.3 Monotonicity of Posterior Expectations

This appendix establishes a series of monotonicity results about how posterior expectations

of various latent variables change as some agent’s outcome shifts. These results are con-

sequences of the SFOSD results derived in Appendix B.2. Several of the results require

smoothness or positivity conditions on underlying distribution and density functions, which

are straightforward but tedious to check in our environment. We relegate proofs of these

properties to Online Appendix O.1.

We first establish that the posterior expectation of an agent’s type increases in his own

signal, and that the rate of increase is bounded strictly between 0 and 1.

Lemma B.6 (Forecast sensitivity). For each agent i ∈ {1, ..., N} and outcome-action profile

(S, a),

0 <
∂

∂Si
E[θi | S; a] < 1.

Proof. For convenience, we suppress the dependence of distributions on a throughout this

proof. Also wlog consider agent i = 1. We establish the result for the quality linkage model,

with the result for the circumstance linkage model following by nearly identical work.

Fix a vector of signal realizations S−1. First note that gQ1 (S1 | θ1,S−1) = gQ1 (S1 | θ1), and

S1 is the sum of a constant plus the independent random variables θ1 and ε1, each of which has

a C1, strictly positive, strictly log-concave density function with bounded derivative. Thus

by Lemma B.1 gQ1 (S1 | θ1,S−1) satisfies SMLRP with respect to θ1. Further, fQθ1(θ1 | S−1) is

continuous in θ1 by Lemma O.3. Lemma B.2 then ensures that FQ
θ1

(θ1 | S) is a C1 function

of (θ1, S1) and ∂
∂S1

FQ
θ1

(θ1 | S) < 0 everywhere.
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Meanwhile conditional on S−1, S1 can be written

S1 = a1 + θ̃ + θ⊥1 + ε1,

where θ̃ is independent of θ⊥1 and ε1 and has density function fθ̃ defined by fθ̃(t) ≡ fQ
θ

(θ =

t | S−1). We first show that fθ̃ is a C1, strictly positive, strictly log-concave function with

bounded derivative. By Bayes’ rule,

fθ̃(t) =
fθ(t)

∏
i>1 g

Q
i (Si | θ = t)

gQ(S−1)
=
fθ(t)

∏
i>1 fε+θ⊥(Si − t− ai)
gQ(S−1)

,

where fε+θ⊥ is the convolution of fθ⊥ and fε. Since fθ⊥ and fε are both C1, strictly positive,

strictly log-concave functions with bounded derivatives, so is fε+θ⊥ . It follows immediately

that fθ̃ is a strictly positive, C1 function with bounded derivative. Further, taking logarithms

yields

log fθ̃(t) = log fθ(t)− log gQ(S−1) +
∑
i>1

log fε+θ⊥(Si − t− ai).

Hence log fθ̃ is a sum of constant and strictly concave functions, meaning it is strictly concave.

Thus fθ̃ is strictly log-concave. This means that conditional on S−1, S1 is the sum of

a constant plus the independent random variables ε1 and θ̃ + θ⊥1 , each of which has a C1,

strictly positive, strictly log-concave density function with bounded derivative. So by Lemma

B.1, gQ1 (S1 | ε1,S−1) satisfies SMLRP with respect to ε1. Further, fQθ1(ε1 | S−1) = fε(ε1) is

continuous in ε1 by assumption. Lemma B.2 then ensures that FQ
ε1

(ε1 | S) is a C1 function

of (ε1, S1) and ∂
∂S1

FQ
ε1

(ε1 | S) < 0 everywhere.

By definition, E[θ1 | S] is equal to

E[θ1 | S] =

∫ ∞
−∞

θ1 dF
Q
θ1

(θ1 | S).

We will perform a change of measure to expect over quantiles of θ1 rather than θ1 itself.

Fix S−1. The previous paragraphs ensure that FQ
θ1

(t | S) − q is a C1 function of (t, S1, q)

everywhere, while Lemma O.3 ensures that the Jacobian of this function wrt to t is fQθ1(t |
S) > 0. Then by the implicit function theorem there exists a continuously differentiable

quantile function φ(q, S1) such that FQ
θ1

(φ(q, S1) | S) = q and

∂φ

∂S1

(q, S1) = −
[

1

fQθ1(t | S)

∂

∂S1

FQ
θ1

(t | S)

]
t=φ(q,S1)

> 0

for every q ∈ (0, 1) and S1 ∈ R. Changing measure, E[θ1 | S] may be expressed as an

expectation over quantiles of θ1, yielding

E[θ1 | S] =

∫ 1

0

φ(q, S1) dq.
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Then for any ∆ > 0,

1

∆
E[θ1 | S1 + ∆,S−1]− E[θ1 | S] =

∫ 1

0

1

∆
(φ(q, S1 + ∆)− φ(q, S1)) dq.

By Assumption 3, E[θ1 | S] is differentiable wrt S1 everywhere. So the limit of each side is

well-defined as ∆ ↓ 0. Further, as φ(q, S1) is strictly increasing in S1 for each q, the interior

of the integrand is everywhere positive. Then by Fatou’s lemma

∂

∂S1

E[θ1 | S] ≥
∫ 1

0

∂φ

∂S1

(q, S1) dq > 0.

Now, recall that

S1 = a1 + θ1 + ε1,

so that

S1 = E[S1 | S] = a1 + E[θ1 | S] + E[ε1 | S].

Then in particular E[ε1 | S] must be differentiable wrt S1 given that the remaining terms in

the identity are. Very similar work to the previous paragraph then implies that

∂

∂S1

E[ε1 | S] > 0.

Finally, differentiate the identity relating E[θ1 | S] and E[ε1 | S] to obtain

1 =
∂

∂S1

E[θ1 | S] +
∂

∂S1

E[ε1 | S].

Since each term on the right-hand side is strictly positive, each much also be strictly less

than 1.

We next establish that the posterior expectation of the common component of the out-

come in each model is increasing in each agent’s outcome, with the rate of increase bounded

strictly above 0.

Lemma B.7. For each agent i ∈ {1, ..., N} and outcome-action profile (S, a) :

• In the quality linkage model, ∂
∂Si

E[θ | S] > 0,

• In the circumstance linkage model, ∂
∂Si

E[ε | S] > 0.

Proof. For convenience, we suppress the dependence of distributions on a in this proof. We

establish the result for the quality linkage model, with the proof for the circumstance linkage

model following by nearly identical work. By definition of E[θ | S],

E[θ | S] =

∫
θ dFQ

θ
(θ | S).
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Now, Lemma B.3 established that FQ

θ
(θ | S) is a C1 function of (θ, Si), and ∂

∂Si
FQ

θ
(θ | S) < 0

everywhere. Then the function FG
θ

(θ | S) − q is a C1 function of (q, θ, Si) with Jacobian

fQ
θ

(θ | S) wrt Q. By Bayes’ rule

fQ
θ

(θ | S) =
fθ(θ)

∏N
i=1 gi(Si | θ)∫

dθ
′
fθ(θ

′
)
∏N

i=1 gi(Si | θ
′
)
,

and as fθ(θ) and gi(Si | θ) = fθ⊥+ε(Si − θ − ai) are all strictly positive by assumption,

fQ
θ

(θ | S) > 0 everywhere. So fix S−i. Then by the implicit function theorem there exists a

C1 quantile function φ(q, Si) such that FQ

θ
(φ(q, Si) | S) = q everywhere, and

∂φ

∂Si
(q, Si) = −

[
1

fQ
θ

(θ | S)

∂

∂Si
FQ

θ
(θ | S)

]
θ=φ(q,Si)

> 0.

By a change of measure, E[θ | S] may be expressed as an integral with respect to quantiles

of θ as

E[θ | S] =

∫ 1

0

φ(q, Si) dq.

Then for every ∆ > 0,

1

∆

(
E[θ | S−i, Si = si + ∆]− E[θ | S−i, Si = si]

)
=

∫ 1

0

1

∆
(φ(q, si + ∆)− φ(q, si)) dq.

Assumption 3 guarantees that ∂
∂Si

E[θ | S] exists. So the limit of each side as ∆ ↓ 0 is well-

defined. Further, since φ(q, Si) is strictly increasing, the integrand on the rhs is well-defined.

Then by Fatou’s lemma,

∂

∂Si
E[θ | S] ≥

∫ 1

0

∂φ

∂Si
(q, Si) dq > 0.

We next establish how the posterior expectation of each agent’s type changes as some

other agent’s outcome shifts. Note that the result depends critically on the model. For

simplicity we consider how agent 1’s variables shift as agent N ’s outcome changes. By

symmetry an analogous result holds for any pair of agents.

Lemma B.8. For every outcome-action profile (S, a),

∂

∂SN
E[θ1 | S; a] > 0
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in the quality linkage model, while

∂

∂SN
E[θ1 | S; a] < 0

in the circumstance linkage model.

Proof. For convenience, we suppress the dependence of distributions on a in this proof. By

definition E[θ1 | S] is given by

E[θ1 | S] =

∫ ∞
−∞

θ1 dF
M
θ1

(θ1 | S).

Fix S−N . By Lemma O.4, FM
θ1

(θ1 | S) is a C1 function of (SN , θ1), and so FM
θ1

(θ1 | S)− q is

a C1 function of (SN , θ1, q) with Jacobian fMθ1 (θ1 | S) wrt θ1. By Lemma O.3 the Jacobian

is strictly positive everywhere, hence by the implicit function theorem there exists a C1

quantile function φ(q, SN) satisfying FM
θ1

(φ(q, S1) | S) = q everywhere, with derivative

∂φ

∂SN
(q, SN) = −

[
1

fMθ1 (θ1 | S)

∂

∂SN
FM
θ1

(θ1 | S)

]
θ1=φ(q,SN )

.

By Lemma B.5, ∂
∂SN

FQ
θ1

(θ1 | S) < 0 everywhere while ∂
∂SN

FC
θ1

(θ1 | S) > 0 everywhere. Hence
∂φ
∂SN

(q, SN) > 0 everywhere in the quality linkage model, while ∂φ
∂SN

(q, SN) < 0 everywhere

in the circumstance linkage model.

By a change of variables, E[θ1 | S] may be expressed as an integral over quantiles of θ1 as

E[θ1 | S] =

∫ 1

0

φ(q, SN) dq.

Consider first the quality linkage model. For every ∆ > 0 we have

1

∆
(E[θ1 | S−N , SN = sN + ∆]− E[θ1 | S−N , SN = sN ])

=

∫ 1

0

1

∆
(φ(q, sN + ∆)− φ(sN)) dq,

where the integrand is strictly positive for every ∆ > 0 given that ∂φ
∂SN

(q, SN) > 0 everywhere.

By Assumption 3, E[θ1 | S] is differentiable wrt SN everywhere, so the limits of both sides

must exist as ∆ ↓ 0. Then by Fatou’s lemma,

∂

∂SN
E[θ1 | S] ≥

∫ 1

0

∂φ

∂SN
(q, SN) dq > 0.

Analogously, in the circumstance linkage model

− 1

∆
(E[θ1 | S−N , SN = sN + ∆]− E[θ1 | S−N , SN = sN ])

=

∫ 1

0

− 1

∆
(φ(q, sN + ∆)− φ(sN)) dq,
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where the integrand is again positive and the limits of both sides exist. Then by Fatou’s

lemma

− ∂

∂SN
E[θ1 | S] ≥ −

∫ 1

0

∂φ

∂SN
(q, SN) dq > 0,

or equivalently
∂

∂SN
E[θ1 | S] < 0.

C Proofs for Section 3 (Exogenous Entry)

C.1 Equilibrium Characterization

In this section we establish that there exists a unique equilibrium to the exogenous-entry

model, which is characterized by the first-order condition described in the body of the paper.

Fix a population size N, and assume all agents in the segment enter in the first period. For

every α ∈ RN
+ and ∆ ≥ −α1, define

µ(∆;α) ≡ E[E[θ1 | S; a = α] | a = (α1 + ∆, α−1)]

to be agent 1’s expected second-period payoff from exerting effort α1 + ∆ when the principal

expects each agent i ∈ {1, ..., N} to exert effort αi.

Lemma C.1. The value function µ(∆;α) and its derivatives satisfy the following properties:

(a) µ(∆;α) is independent of α and is continuous and strictly increasing in ∆.

(b) µ′(∆;α) exists, is continuous in ∆, and satisfies 0 < µ′(∆;α) < 1 for every ∆.

(c) D+µ′(∆;α) ≤ Kfor every ∆.26

Proof. Fix a model M ∈ {Q,C}. The quantity µ(∆;α) can be written explicitly as

µ(∆;α) =

∫
dGM(S = s | a = (α1 + ∆, α−1))E[θ | S = s; a = α].

Further,

E[θ | S = s; a = α] =

∫
θ1 dF

M
θ1

(θ1 | S = s; a = α),

26Given a function f : R → R, the Dini derivative D+ is a generalization of the derivative existing for

arbitrary functions and defined by D+f(x) = lim suph↓0(f(x + h) − f(x))/h. When f is differentiable at a

point x, D+f(x) = f ′(x).
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and by Bayes’ rule

fMθ1 (θ1 | S = s; a = α) =
gM(S = s | θ1; a = α)fθ(θ)

gM(S = s | a = α)
.

Since effort affects the outcome as an additive shift, gM(S = s | a = α) = gM(S = s − α |
a = 0) and gM(S = s | θ1; a = α) = gM(S = s− α | θ1; a = 0). So

fMθ1 (θ | S = s; a = α) =
gM(S = s− α | θ; a = 0)fθ(θ)

gM(S = s− α | a = 0)

= fMθ1 (θ1 | S = s− α;α = 0).

Thus

E[θ1 | S = s; a = α] =

∫
θ1 dF

M
θ1

(θ1 | S = s− α; a = 0) = E[θ1 | S = s− α; a = 0].

Then µ(∆;α) may be equivalently written

µ(∆;α) =

∫
dGM(S = s− α | a = (∆,0))E[θ1 | S = s− α; a = 0].

Using the change of variables s′ = s− α then reveals that µ(∆;α) = µ(∆; 0), so µ is indeed

independent of α.

Now fix ∆ and ∆′ < ∆. Since effort affects the outcome as an additive shift, GM(S = s |
a = (α1 + ∆, α−1)) = GM(S = (s1 − (∆−∆′), s−1) | a = (α1 + ∆, α−1)) for every s1. Then

defining a change of variables via s′1 = s1 − (∆ − ∆′) and s′−i = s−i, the previous integral

expression for µ(∆;α) may be equivalently written

µ(∆;α) =

∫
dGM(S = s′ | a = (α1 + ∆′, α−1))E[θ1 | S = (s′1 + (∆−∆′), s′−1); a = α].

Now, by Assumption 3 ∂
∂S1

E[θ1 | S; a] exists and is continuous everywhere, and Lemma B.6

established that 0 < ∂
∂S1

E[θ1 | S; a] < 1 everywhere. Hence by the Leibniz integral rule

µ′(∆;α) exists and

µ′(∆;α) =

∫
dGM(S = s′ | a = α)

∂

∂∆
E[θ1 | S = (s′1 + ∆, s′−1); a = α],

and in particular 0 < µ′(∆;α) < 1. An immediate corollary is that µ(∆;α) is continuous

and strictly increasing everywhere. Further, the dominated convergence theorem implies

that µ′(∆;α) is continuous in ∆ everywhere.

Next, by Assumption 6

∂2

∂∆2
E[θ1 | S = (s′1 + ∆, s′−1); a = α]
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exists and is bounded in the interval (−∞, K] everywhere. Then for each δ > 0 and (s, a,∆),

the mean value theorem implies that

1

δ

(
∂

∂∆
E[θ1 | S = (s′1 + ∆ + δ, s′−1); a = α]− ∂

∂∆
E[θ1 | S = (s′1 + ∆, s′−1); a = α]

)
=

∂2

∂∆2
E[θ1 | S = (s′1 + ∆ + δ′, s′−1); a = α] ≤ K

for some δ′ ∈ [0, δ]. Reverse Fatou’s lemma then implies that D+µ′(∆;α) ≤ K.

Lemma C.2. µ(∆;α)− C(α1 + ∆) is a strictly concave function of ∆ for any α.

Proof. Fix an α, and define φ(∆) ≡ µ(∆;α) − C(α1 + ∆). By Lemma C.1, φ′ exists and is

continuous everywhere. We establish the necessary and sufficient condition for strict concav-

ity that φ′ is strictly decreasing. We invoke the basic monotonicity theorem from analysis

that any function f which is continuous and satisfies D+f ≥ 0 everywhere is nondecreasing

everywhere. We apply this result to −µ′(∆;α) + K∆. Using basic properties of the Dini

derivatives D+ and D+, we have D+(−µ′(∆;α)) = −D+µ
′(∆;α) ≥ −D+µ′(∆;α). Then since

K∆ is differentiable and D+µ′(∆;α) ≤ K from Lemma C.1, we have D+(−µ′(∆;α)+K∆) =

D+(−µ′(∆;α)) + K ≥ 0. So µ′(∆;α) −K∆ is nonincreasing everywhere. So choose any ∆

and ∆′ > ∆. Then

φ′(∆′) = µ′(∆′;α)−K∆′ +K∆′ − C ′(α1 + ∆′) ≤ µ′(∆;α) +K(∆′ −∆)− C ′(α1 + ∆′).

But also by Assumption 6, C ′′(α1 + ∆′′) > K for every ∆′′ ∈ (∆,∆′), so C ′(α1 + ∆′) >

C ′(α1 + ∆) +K(∆′ −∆). Thus

φ′(∆′) < µ′(∆;α)− C ′(α1 + ∆) = φ′(∆),

as desired.

Proposition C.1. There exists a unique equilibrium action profile characterized by ai =

a∗i (N) for each player i, where a∗i (N) is the unique solution to

µ′(0; a∗(N)) = C ′(a∗(N)).

Proof. Lemma C.1 established that µ′(0; a∗(N)) is well-defined, independent of a∗(N), and

bounded in the interval [0, 1]. Then as C ′ is continuous, strictly increasing, and satisfies

C ′(0) = 0 and C ′(∞) =∞, there exists a unique solution to the stated first-order condition.

This solution constitutes an equilibrium so long as ∆ = 0 maximizes the objective function

µ(∆; a∗(N)) − C(a∗(N) + ∆), which is guaranteed by the fact, established in Lemma C.2,

that this function is strictly concave in ∆.

50



Define µN(∆) ≡ µ(∆; a∗(N)) and MV (N) ≡ µ′N(0) for each N. When we wish to make

the model clear, we will write MVM(N) for M ∈ {Q,C}. An immediate implication of

Lemma C.1 is that 0 < MV (N) < 1 for all N . We conclude this appendix by establishing

that these bounds also hold strictly in the limit as N →∞.
Lemma C.3. 0 < limN→∞MV (N) < 1.

Proof. Consider first the quality linkage model. The proof of Lemma 1 establishes that

limN→∞MVQ(N) = MVQ(∞), where MVQ(∞) is the equilibrium marginal value of effort

in a one-agent model where the common component θ is observed by the principal. In this

case the agent’s equilibrium expected value of distortion is

µ∞(∆; a∗(∞)) = E[θ] + E[E[θ⊥1 | S̃1; a1 = a∗(∞)] | a1 = a∗(∞) + ∆],

where S̃1 ≡ a1 + θ⊥1 + ε1. Since the contribution of θ to the agent’s payoff is not influenced

by effort, it has no incentive effect. The marginal value of effort in this setting is then just

the marginal value of effort in a one-agent model where the agent’s type has density fθ⊥ .

As this distribution satisfies the same regularity conditions as fθ, the reasoning establishing

that 0 < MVQ(1) < 1 immediately implies that 0 < MVQ(∞) < 1 as well.

Now consider the circumstance linkage model. In this model the proof of Lemma 1

establishes that limN→∞MVC(N) = MVC(∞), where MVC(∞) is the equilibrium marginal

value of effort in a one-agent model where the common component ε is observed by the

principal. In this case the agent’s equilibrium expected value of distortion is

µ∞(∆; a∗(∞)) = E[E[θ1 | S̃1; a1 = a∗(∞)] | a1 = a∗(∞) + ∆],

where S̃1 ≡ a1 +θ1 +ε⊥1 . The marginal value of effort in this setting is then just the marginal

value of effort in a one-agent model where the noise distribution has density fε⊥ . As this

distribution satisfies the same regularity conditions as fε, the reasoning establishing that

0 < MVC(1) < 1 immediately implies that 0 < MVC(∞) < 1 as well.

C.2 Proof of Lemma 1

Throughout this proof, we will without loss of generality consider agent 1’s problem. To

compare results across segments of differing sizes, we will consider there to be a single

underlying vector S = (S1, S2, ...) of outcomes for a countably infinite set of agents, with the

N -agent model corresponding to observation of the outcomes of the first N agents. We will

write a∗(N) to indicate the N -vector with entries a∗(N), and similarly a∗(N + 1) to indicate

the N + 1-vector with entries a∗(N + 1). Given any finite or countably infinite vector x with

at least j elements, we will use xi:j to indicate the subvector of x consisting of elements i

through j. For the distribution function of the outcome vector Si:j, we will write GM
i:j.
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C.2.1 Monotonicity in N

We first establish the monotonicity claims of the lemma. Fix a model M ∈ {Q,C} and a

segment size N. By definition, the expected value of distortion µN(∆) is

µN(∆) =

∫
dGM

1:N(S1:N = s1:N | a1:N = (a∗(N) + ∆, a∗(N)2:N))

× E[θ1 | S1:N = s1:N ; a1:N = a∗(N)].

By Lemma C.1, the value of distortion is independent of the action vector expected by the

principal, so we may equivalently write

µN(∆) =

∫
dGM

1:N(S1:N = s1:N | a1:N = (a∗(N + 1) + ∆, a∗(N + 1)2:N))

× E[θ1 | S1:N = s1:N ; a1:N = a∗(N + 1)1:N ] (C.1)

replacing a∗(N) everywhere with a∗(N + 1). Further, the additive structure of the model

implies that the distribution function GM
1:N satisfies the identity

GM
1:N(S1:N = s1:N | a1:N) = GM

1:N(S1:N = s1:N + b1:N | a1:N + b1:N)

for any outcome realization s1:N , action vector a1:N , and shift vector b1:N . Then taking

b1:N = (−∆,01:N−1), the representation of µN(∆) in (C.1) may be rewritten

µN(∆) =

∫
dGM

1:N(S1:N = s′1:N | a1:N = a∗(N + 1)1:N)

× E[θ1 | S1:N = (s′1 + ∆, s′2:N); a1:N = a∗(N + 1)1:N ],

where we have changed variables to the integrator s′1:N = s1:N + b1:N .

Meanwhile, the value of distortion with N + 1 agents is

µN+1(∆) =

∫
dGM

1:N+1(S1:N+1 = s1:N+1 | a1:N+1 = (a∗(N + 1) + ∆, a∗(N + 1)2:N+1))

× E[θ1 | S1:N+1 = s1:N+1; a1:N+1 = a∗(N + 1)].

Using the same transformation as in the N -agent model, this expression may be equivalently

written

µN+1(∆) =

∫
dGM

1:N+1(S1:N+1 = s′1:N+1 | a1:N+1 = a∗(N + 1))

× E[θ1 | S1:N+1 = (s′1 + ∆, s′2:N+1); a1:N+1 = a∗(N + 1)].

For the remainder of the proof, all distributions will be conditioned on the action profile

a1:N+1 = a∗(N + 1), so conditioning of distributions on actions will be suppressed.
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To compare the expressions for µN(∆) and µN+1(∆) just derived, we use the law of

iterated expectations. In the N -agent model we have

E[θ1 | S1:N = (s1 + ∆, s2:N)] =

∫
dGM

N+1(SN+1 = sN+1 | S1:N = (s1 + ∆, s2:N))

× E[θ1 | S1:N+1 = (s1 + ∆, s2:N+1)].

So

µN(∆) =

∫
dGM

1:N(S1:N = s1:N)

×
∫
dGM

N+1(SN+1 = sN+1 | S1:N = (s1 + ∆, s2:N))

× E[θ1 | S1:N+1 = (s1 + ∆, s2:N+1)].

Meanwhile in the N + 1-agent model the law of iterated expectations may be applied to the

unconditional expectation over S1:N+1 to obtain

µN+1(∆) =

∫
dGM

1:N+1(S1:N = s1:N)

×
∫
dGM

N+1(SN+1 = sN+1 | S1:N = s1:N)

× E[θ1 | S1:N+1 = (s1 + ∆, s2:N+1)].

So define a function ψ by

ψ(δ1, δ2, s1:N) ≡
∫
dGM

N+1(SN+1 = sN+1 | S1:N = (s1 + δ1, s2:N))

× E[θ1 | S1:N+1 = (s1 + δ2, s2:N+1)].

Then the values of distortion with N and N + 1 agents may be written in the common form

µN(∆) =

∫
dGM

1:N(S1:N)ψ(∆,∆,S1:N)

while

µN+1(∆) =

∫
dGM

1:N(S1:N)ψ(0,∆,S1:N).

Then for any ∆ > 0,

1

∆
(µN(∆)− µN+1(∆)) =

∫
dGM

1:N(S1:N)
1

∆
(ψ(∆,∆,S1:N)− ψ(0,∆,S1:N)).

Now, as MV (N) = µ′N(0) and MV (N + 1) = µ′N+1(0) both exist and are finite by Lemma

C.1, it follows that

MV (N)−MV (N + 1) = lim
∆↓0

1

∆
(µN(∆)− µ)− lim

∆↓0

1

∆
(µN+1(∆)− µ)

= lim
∆↓0

1

∆
(µN(∆)− µN+1(∆))
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exists, so that

MV (N)−MV (N + 1) = lim
∆↓0

∫
dGM

1:N(S1:N)
1

∆
(ψ(∆,∆,S1:N)− ψ(0,∆,S1:N)),

and in particular the limit on the rhs also exists. To bound the right-hand side and complete

the proof, we analyze the behavior of 1
∆

(ψ(∆,∆,S1:N)− ψ(0,∆,S1:N)) as ∆ tends to zero.

Consider first the quality linkage model. Using the law of total probability, we may

re-write ψ(δ1, δ2, s1:N) as

ψ(δ1, δ2, s1:N) =

∫
dFQ

θ
(θ | S1:N = (s1 + δ1, s2:N))

×
∫
dGQ

N+1(SN+1 = sN+1 | θ,S1:N = (s1 + δ, s2:N))

× E[θ1 | S1:N+1 = (s1 + δ2, s2:N+1)].

As SN+1 is independent of S1:N conditional on θ, this is equivalently

ψ(δ1, δ2, s1:N) =

∫
dFQ

θ
(θ | S1:N = (s1 + δ1, s2:N))

×
∫
dGQ

N+1(SN+1 = sN+1 | θ)E[θ1 | S1:N+1 = (s1 + δ2, s2:N+1)].

Inverting

q = GQ
N+1(SN+1 = sN+1 | θ) = Fθ⊥+ε(sN+1 − θ − a∗(N + 1))

yields the quantile function sN+1 = F−1
θ⊥+ε

(q) + θ + a∗(N + 1), so by a change of variables ψ

may be equivalently written

ψ(δ1, δ2, s1:N) =

∫
dFQ

θ
(θ | S1:N = (s1 + δ1, s2:N))

×
∫ 1

0

dq E[θ1 | S1:N+1 = (s1 + δ2, s2:N , F
−1
θ⊥+ε

(q) + θ + a∗(N + 1))].

Now fix s1:N , and write the integrand of this representation as

ζ(θ, δ, q) ≡ E[θ1 | S1:N+1 = (s1 + δ, s2:N , F
−1
θ⊥+ε

(q) + θ + a∗(N + 1))].

By Lemma B.5, FQ

θ
(θ | S1:N = (s1 + δ, s2:N)) is a C1 function of (θ, δ) satisfying ∂

∂δ
FQ

θ
(θ |

S1:N = (s1 +δ, s2:N)) < 0 everywhere. Then FQ

θ
(θ | S1:N = (s1 +δ, s2:N))−q′ is a C1 function

of (q′, δ, δ), with Jacobian fQ
θ

(θ | S1:N = (s1 + δ, s2:N)) wrt θ. By Lemma O.3 this Jacobian

is strictly positive everywhere. Then by the implicit function theorem there exists a C1

quantile function φ(q′, δ) satisfying FQ

θ
(φ(q′, δ) | S1:N = (s1 + δ, s2:N)) = q′ for all (q′, δ1) and

∂φ

∂δ
(q′, δ) = −

[
1

fQ
θ

(θ | S1:N = (s1 + δ, s2:N))

∂

∂δ
FQ

θ
(θ | S1:N = (s1 + δ, s2:N))

]
θ=φ(q′,δ)

> 0.
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Then by a further change of variables, ψ(δ1, δ2, s1:N) may be written

ψ(δ1, δ2, s1:N) =

∫ 1

0

dq′
∫ 1

0

dq ζ(φ(q′, δ1), δ2, q).

By Lemma B.8 ∂
∂SN+1

E[θ1 | S1:N+1] > 0 everywhere. Since further ∂φ/∂δ > 0, it follows

that

ζ(φ(q′,∆),∆, q) > ζ(φ(q′, 0),∆, q)

for all (q, q′) and every ∆ > 0. Hence 1
∆

(ψ(∆,∆, s1:N)− ψ(0,∆, s1:N)) > 0 for every ∆ > 0.

This argument holds independent of the choice of s1:N . Thus Fatou’s lemma implies

MV (N)−MV (N + 1) ≥
∫
dGM

1:N(S1:N) lim inf
∆↓0

1

∆
(ψ(∆,∆,S1:N)− ψ(0,∆,S1:N)).

A further application of Fatou’s lemma yields

lim inf
∆↓0

1

∆
(ψ(∆,∆,S1:N)− ψ(0,∆,S1:N))

≥
∫ 1

0

dq′
∫ 1

0

dq lim
∆↓0

1

∆
(ζ(φ(q′,∆),∆, q)− ζ(φ(q′, 0),∆, q)).

Recall that by Assumption 3, ∂
∂Si

E[θ1 | S1:N+1] exists and is continuously differentiable

in S1:N+1 for every i. Thus E[θ1 | S1:N+1] is totally differentiable wrt S1:N+1 everywhere. So

write the integrand of the previous expression for lim inf∆↓0
1
∆

(ψ(∆,∆,S1:N)−ψ(0,∆,S1:N))

as

1

∆
(ζ(φ(q′,∆),∆, q)− ζ(φ(q′, 0),∆, q))

=
1

∆
(ζ(φ(q′,∆),∆, q)− ζ(φ(q′, 0), 0, q))− 1

∆
(ζ(φ(q′, 0),∆, q, q′)− ζ(φ(q′, 0), 0, q)).

Taking ∆ ↓ 0 and using the chain rule yields

lim
∆↓0

1

∆
(ζ(φ(q′,∆),∆, q)− ζ(φ(q′, 0),∆, q))

=
∂ζ

∂θ
(φ(q′, 0), 0, q)

∂φ

∂δ
(q′, 0) +

∂ζ

∂δ
(φ(q′, 0), 0, q)− ∂ζ

∂δ
(φ(q′, 0), 0, q)

=
∂ζ

∂θ
(φ(q′, 0), 0, q)

∂φ

∂δ
(q′, 0).

The fact that ∂
∂SN+1

[θ1 | S1:N+1] > 0 implies that ∂ζ

∂θ
(φ(q′, 0), 0, q) > 0, and as previously

noted ∂φ/∂δ > 0. It follows that this limit is strictly positive. Thus

lim inf
∆↓0

1

∆
(ψ(∆,∆,S1:N)− ψ(0,∆,S1:N)) > 0

everywhere, meaning in turn MV (N) > MV (N + 1).
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The result for the circumstance linkage model follows from very similar work. The one

difference in the analysis is that in the circumstance linkage model Lemma B.8 implies that
∂

∂SN+1
E[θ1 | S1:N+1] < 0 everywhere, so that in this model

lim
∆↓0

1

∆
(ζ(φ(q′, 0),∆, q)− ζ(φ(q′,∆),∆, q)) > 0

and
1

∆
(ψ(0,∆, s1:N)− ψ(∆,∆, s1:N)) > 0

everywhere. Then by Fatou’s lemma

MV (N + 1)−MV (N) = lim
∆↓0

∫
dGM

1:N(S1:N)
1

∆
(ψ(0,∆,S1:N − ψ(∆,∆,S1:N))

≥
∫
dGM

1:N(S1:N) lim inf
∆↓0

1

∆
(ψ(0,∆,S1:N − ψ(∆,∆,S1:N)) > 0,

or MV (N) < MV (N + 1).

C.2.2 The N →∞ limit

Consider a limiting model in which the principal observes a countably infinite vector of

outcomes S = (S1, S2, ...). By the law of large numbers, in the quality linkage model this

means that the principal perfectly infers θ, while in the circumstance linkage model the

principal perfectly infers ε. Define µ(∆;α) analogously to the finite-population case. In each

model,reasoning very similar to the proof of Lemma C.1 implies that µ′(0, α) exists, is inde-

pendent of α, and lies in [0, 1]. So there exists a unique, finite a∗(∞) satisfying µ′(0; a∗(∞)) =

C ′(a∗(∞)). Define µ∞(∆) ≡ µ(∆; a∗(∞)) and MV (∞) ≡ µ′∞(0) in each model. Lemma C.3

establishes that 0 < MV (∞) < 1. We will show that limN→∞MV (N) = MV (∞). Lemma

C.3 establishes that this result implies 0 < limN→∞MV (N) < 1.

To prove the result, we will need the ability to change measure between the distribution

of outcomes at the equilibrium action profile, and one in which a single agent, without loss

agent 1, deviates to a different action. For each model, define a reference probability space

(Ω,F ,Pa), containing all relevant random variables for arbitrary segment sizes. For the

quality linkage model this space supports the latent types θ, θ⊥1 , θ
⊥
2 , ... and shocks ε1, ε2, ...

as well as the outcomes S1, S2, ... Similarly, in the circumstance linkage model the space

supports the latent types θ1, θ2, ..., shocks ε, ε⊥1 , ε
⊥
2 , ..., and outcomes S1, S2, ... In each model

the probability measure Pa depends on the vector of agent actions a = (a1, a2, ...), as the

distributions of the outcomes depend on the actions.

We will use F∞ to denote the σ-algebra generated by the full vector of outcomes S1, S2, ...

Note that by the LLN all latent types may be taken to be measurable with respect to F∞.
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Finally, for each segment size N, we will let P∗N denote the restriction of the measure Pa∗(N)

to (Ω,F∞), and similarly let P∆,N denote the restriction of the measure P(a∗(N)+∆,a∗(N)) to

(Ω,F∞). These measures represent the distributions over outcomes induced when all agents

take actions a∗(N) and when agent 1 deviates to action a∗(N) + ∆, respectively.

Lemma C.4. The Radon-Nikodym derivative for the change of measure from (Ω,F∞,P∗N)

to (Ω,F∞,P∆,N) is

dP∆,N

dP∗N =
gQ1 (S1 | θ; a1 = a∗(N) + ∆)

gQ1 (S1 | θ; a1 = a∗(N))

in the quality linkage model and

dP∆,N

dP∗N =
gC1 (S1 | ε; a1 = a∗(N) + ∆)

gC1 (S1 | ε; a1 = a∗(N))

in the circumstance linkage model.

Proof. For convenience we suppress the dependence of distributions on all actions other

than a1 in this proof. We derive the derivative for the quality linkage model, with the

expression for the circumstance linkage model following from nearly identical work. Fix any

F∞-measurable random variable X. Then there exists a measurable function x : R∞ → R
such that X = x(S) a.s. Thus

E[X | a1 = a∗(N) + ∆]

=

∫
dFθ(θ) dG

Q
1 (S1 | θ; a1 = a∗(N) + ∆) dGQ

−1(S−1 | θ, S1; a1 = a∗(N) + ∆)

× x(S).

As S−1 is independent of S1 conditional on θ in the quality linkage model, GQ
−1(S−1 |

θ, S1; a1 = a∗(N) + ∆) = GQ
−1(S−1 | θ). So this expression may be equivalently written

E[X | a1 = a∗(N) + ∆]

=

∫
dFθ(θ) dG

Q
1 (S1 | θ; a1 = a∗(N) + ∆) dGQ

−1(S−1 | θ)x(S)

=

∫
dFθ(θ) dG

Q
1 (S1 | θ; a1 = a∗(N)) dGQ

−1(S−1 | θ)

× gQ1 (S1 | θ; a1 = a∗(N) + ∆)

gQ1 (S1 | θ; a1 = a∗(N))
x(S)

= E

[
gQ1 (S1 | θ; a1 = a∗(N) + ∆)

gQ1 (S1 | θ; a1 = a∗(N))
X | a1 = a∗(N)

]
.
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As this argument holds for arbitrary F∞-measurable X, it must be that

dP∆,N

dP∗N =
gQ1 (S1 | θ; a1 = a∗(N) + ∆)

gQ1 (S1 | θ; a1 = a∗(N))
.

To establish the desired limiting result, we will prove that for any ∆ and N,

|µN(∆)− µ∞(∆)| ≤ κN(∆)
β√
N
,

where

κN(∆) ≡
(
E

[(
dP∆,N

dP∗N − 1

)2
∣∣∣∣∣ a = a∗(N)

])1/2

and β is a finite constant independent of N and ∆ whose value depends on the model. The

following lemma establishes several important properties of κN .

Lemma C.5. κN(∆) is independent of N, κN(0) = 0, κ′N,+(0) = lim sup∆↓0 κN(∆)/∆ <∞.

Proof. We prove the theorem for the quality linkage model, with nearly identical work estab-

lishing the result for the circumstance linkage model. Note that when ∆ = 0, dP∆,N/dP∗N =

1, and so trivially κN(0) = 0. To see that κN(∆) is independent of N, note that the distribu-

tion of each outcome satisfies the translation invariance property GQ
i (Si = si | θ; ai = α) =

GQ
i (Si = si − α | θ; ai = 0) for any si and α. So κN(∆) may be written

κN(∆) =

∫
dFθ(θ) dG

Q
1 (S1 = s1 | θ; a1 = a∗(N))

(
gQ1 (S1 = s1 | θ; a1 = a∗(N) + ∆)

gQ1 (S1 = s1 | θ; a1 = a∗(N))
− 1

)2

=

∫
dFθ(θ) dG

Q
1 (S1 = s1 − a∗(N) | θ; a1 = 0)

(
gQ1 (S1 = s1 − a∗(N) | θ; a1 = ∆)

gQ1 (S1 = s1 − a∗(N) | θ; a1 = 0)
− 1

)2

So perform a change of variables to s′1 ≡ s1 − a∗(N) to obtain the representation

κN(∆) =

∫
dFθ(θ) dG

Q
1 (S1 = s′1 | θ; a1 = 0)

(
gQ1 (S1 = s′1 | θ; a1 = ∆)

gQ1 (S1 = s′1 | θ; a1 = 0)
− 1

)2

,

which is independent of N, as desired.

Now, let ξ ≡ θ⊥1 + ε1. Let fξ be the convolution of fθ⊥ and fε. Then for any ∆, gQ1 (S1 |
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θ; a1 = a∗(N) + ∆) = fξ(S1 − θ − a∗(N)−∆) = fξ(ξ −∆) under the measure P∗N . Hence

κN(∆) =

(
E

[(
dP∆,N

dP∗N − 1

)2
∣∣∣∣∣ a = a∗(N)

])1/2

=

(
E

[(
fξ(ξ −∆)

fξ(ξ)
− 1

)2
∣∣∣∣∣ a = a∗(N)

])1/2

=

∫
dFξ(ξ)

(
fξ(ξ −∆)− fξ(ξ)

fξ(ξ)

)2

We must therefore show that the limit

lim sup
∆↓0

1

∆
κ(∆) = lim sup

∆↓0

1

∆

(∫
dFξ(ξ)

(
fξ(ξ −∆)− fξ(ξ)

fξ(ξ)

)2
)1/2

=

(
lim sup

∆↓0

∫
dFξ(ξ)

1

∆2

(
fξ(ξ −∆)− fε(ξ)

fε(ξ)

)2
)1/2

exists and is finite. By Assumption 4, for ∆ sufficiently close to 0 there exists a non-negative,

integrable function J(·) such that

1

∆2

(
fξ(ξ −∆)− fξ(ξ)

fξ(ξ)

)2

≤ J(ξ)

for all ξ. Then by reverse Fatou’s lemma,

lim sup
∆↓0

∫
dFξ(ξ)

1

∆2

(
fξ(ξ −∆)− fξ(ξ)

fξ(ξ)

)2

≤
∫
dFξ(ξ) lim sup

∆↓0

1

∆2

(
fξ(ξ −∆)− fξ(ξ)

fξ(ξ)

)2

≤
∫
dFξ(ξ) J(ξ) <∞,

as desired.

The bound on |µN(∆)−µ∞(∆)| just claimed impies the desired result because for ∆ > 0

it may be rewritten

|(µN(∆)− µ)/∆− (µ∞(∆)− µ)/∆| ≤ κN(∆)− κN(0)

∆

β√
N
,

and thus by taking ∆ ↓ 0 the inequality

|µ′N(0)− µ′∞(0)| ≤ κ′N,+(0)
β

N

must hold. Then as κ′N,+(0) is finite and independent of N, µ′N(0)→ µ′∞(0) as N →∞, as

desired.
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We now derive the claimed bound. To streamline notation, we will write E∗N to represent

expectations conditioning on a = a∗(N), and E∆,N to represent expectations conditioning on

a1 = a∗(N) + ∆ and a2:N = a∗(N)1:N−1. Note first that the expected value of the principal’s

posterior estimate of θ1 is a function only of the size of agent 1’s distortion ∆, but not of

the equilibrium action inference. Thus

µ∞(∆) = E[E[θ1 | S; a = a∗(∞)] | a = (a∗(∞) + ∆, a∗(∞))]

= E[E[θ1 | S; a = a∗(N)] | a = (a∗(N) + ∆, a∗(N))] = E∆,N [E∗N [θ1 | S]].

So we may write

µN(∆)− µ∞(∆) = E∆,N [E∗N [θ1 | S1:N ]− E∗N [θ1 | S]].

Now, performing a change of measure,

E∆,N [E∗N [θ1 | S1:N ]− E∗N [θ1 | S]]

= E∗N
[
dP∆,N

dP∗N
(
E∗N [θ1 | S1:N ]− E∗N [θ1 | S]

)]
= E∗N

[(
dP∆,N

dP∗N − 1

)(
E∗N [θ1 | S1:N ]− E∗N [θ1 | S]

)]
+ E∗N [E∗N [θ1 | S1:N ]− E∗N [θ1 | S]]

= E∗N
[(

dP∆,N

dP∗N − 1

)(
E∗N [θ | S1:N ]− E∗N [θ1 | S]

)]
,

with the last line following by the law of iterated expectations. Then by an application of

the Cauchy-Schwarz inequality,

|µN(∆)− µ∞(∆)| ≤ κN(∆)
(
E∗N

[(
E∗N [θ1 | S1:N ]− E∗N [θ1 | S]

)2
])1/2

.

We will bound the right-hand side for the quality linkage model, with the result for the

circumstance linkage model following by nearly identical work.

Define the family of random variables θ̂N(z) ≡ E∗N [θ1 | S1, θ = z] for z ∈ R. Note that

θ̂1(θ) = E∗N [θ1 | S], as S allows the principal to perfectly infer θ, and θ1 is independent of the

vector of outcomes S−1 conditional on θ. Further, E∗N [θ1 | S1:N ] = E∗N [E∗N [θ1 | S] | S1:N ] is

the mean-square minimizing estimator of θ̂N(θ) conditional on the performance vector S1:N .

Another estimator of θ̂N(θ) is θ̂N

(
θ̃N

)
, where

θ̃N ≡
1

N

N∑
i=1

(Si − µ⊥),
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with µ⊥ = E[θ⊥i ]. So

E∗N
[(
E∗N [θ1 | S1:N ]− E∗N [θ1 | S]

)2
]
≤ E∗N

[(
θ̂N

(
θ̃N

)
− E∗N [θ1 | S]

)2
]
.

Given that shifts in θ affect the outcome Si additively, E∗N [θ1 | S1 = s1, θ = z] = E∗N [θ1 |
S1 = s1−z, θ = 0] for every s1 and z. The proof of Lemma C.3 establishes that E∗N [θ1 | S1, θ]

is differentiable with respect to S1 and uniformly bounded in (0, 1) everywhere. Hence θ̂N(z)

is differentiable and θ̂′N(z) ∈ (−1, 0) for all z. Thus by the fundamental theorem of calculus,

|θ̂N(θ̃N)− θ̂N(θ)| =
∣∣∣∣∣
∫ θ̃N

θ

θ̂′N(z) dt

∣∣∣∣∣ ≤
∫ θ̃N

θ

|θ̂′N(z)| dz ≤ |θ̃N − θ|.

Further note that

θ̃N − θ =
1

N

N∑
i=1

(θ⊥i − µ⊥ + εi),

which has mean 0 and variance (σ2
θ⊥ + σ2

ε)/N given that θ⊥i and εi are independent. So

E∗N
[(
E∗N [θ1 | S1:N ]− E∗N [θ1 | S]

)2
]
≤ σ2

θ⊥ + σ2
ε

N
,

implying the desired bound with β =
√
σ2
θ⊥

+ σ2
ε .

D Proofs for Section 4 (Main Results)

D.1 Proofs of Theorems 1 and 2

Opt-In Equilibrium. In any pure-strategy equilibrium in which all agents opt-in, the equi-

librium effort level a∗ must satisfy two conditions:

MV (N) = C ′(a∗) (D.1)

R + µ− C(a∗) ≥ 0 (D.2)

The expression in (D.1) guarantees that an agent who opts-in cannot strictly gain by devi-

ating to a different effort choice. This is identical to the condition used in the exogenous

entry model to solve for equilibrium. The expression in (D.2) guarantees that agents cannot

profitably deviate to opting-out.

The marginal value MV (N) is independent of a∗, and C ′ is strictly monotone. Thus

(D.1) pins down a unique effort level a∗ = C ′−1(MV (N)). Since C is everywhere in-

creasing, the conditions in (D.1) and (D.2) can be simultaneously satisfied if and only if

0 ≤ C ′−1[MV (N)] ≤ a∗∗ ≡ C−1(R + µ), or equivalently,

0 = C ′(0) ≤MV (N) ≤ C ′(a∗∗)
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noting that C ′−1 is everywhere increasing.

By Assumption 7, R + µ > C(a∗(1)). Since the cost function C has positive first and

second derivatives, R + µ > C(a∗(1)) and R + µ = C(a∗∗) imply that a∗(1) < a∗∗, which

further implies C ′(a∗(1)) < C ′(a∗∗). By Lemma 1, MV (1) = MVQ(1) ≥MVQ(N). Thus

MVQ(N) ≤MVQ(1) = C ′(a∗(1)) ≤ C ′(a∗∗),

and a symmetric all opt-in equilibrium exists in the quality linkage model. In contrast, in

the circumstance linkage model,

MVC(N) ≥MVC(1) = C ′(a∗(1)) (D.3)

so the inequality MVC(N) ≤ C ′(a∗∗) is not guaranteed to hold. An opt-in equilibrium exists

if and only if N is sufficiently small; specifically, N ≤ N∗ where

N∗ ≡ sup{N : MVC(N) ≤ C ′(a∗∗)}.

(It is possible that N∗ is infinite if MVC(N) ≤ C ′(a∗∗) for all N.)

Finally, for the parameters N ≤ N∗ where an opt-in equilibrium exists in both models, it

is possible to rank equilibrium effort levels as follows: Define a∗C and a∗Q to be the respective

equilibrium effort levels. Then, since MVC(N) ≥MV (1) ≥MVQ(N) for all N ,

a∗C = C ′−1(MVC(N)) ≥ C−1(MVQ(N)) = a∗Q

so equilibrium effort is higher in the circumstance linkage model.

Opt-Out Equilibrium. Under the imposed refinement on the principal’s off-equilibrium

belief about the agent’s action, the optimal action conditional on entry is a∗(1). Thus in an

all opt-out equilibrium, the equilibrium action a∗ must satisfy

R + µ− C(a∗(1)) < 0 (D.4)

which violates Assumption 7. There are no pure-strategy equilibria in either model in which

all agents choose to opt-out.

Mixed Equilibrium. For any probability p ∈ [0, 1] and M ∈ {T,C}, let

MVM(p,N) = E
[(
MVM(Ñ + 1

)
| Ñ ∼ Binomial(N − 1, p)

]
be the expected marginal impact for agent i of exerting additional effort beyond the princi-

pal’s expectation, when agent i opts-in and all other agents opt-in with independent prob-

ability p. Note that because MVC(N) is increasing in N, and increasing p shifts up the
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distribution of Ñ in the FOSD sense, MVC(p,N) is increasing in p. Further, because in-

creasing p shifts Pr(Ñ ≤ n) strictly downward for every n < N − 1, this monotonicity is

strict whenever MVC(n) is not constant over the range {1, .., N}. For the same reasons,

MVC(p,N) is increasing in N for fixed p, and strictly increasing whenever p ∈ (0, 1) and

MVC(n) is not constant over {1, ..., N}.
In a mixed equilibrium, the equilibrium effort level a∗ and probability p assigned to

opting-in must jointly satisfy

R + µ− C(a∗) = 0. (D.5)

MV (p,N) = C ′(a∗). (D.6)

The expression in (D.5) pins down the equilibrium action, which is identical to the action

defined as a∗∗ above. Moreover, C ′(a) is independent of both the mixing probability p and

also the fixed segment size N . Therefore an equilibrium exists if and only if MV (p,N) =

C ′(a∗∗) for some p ∈ [0, 1]. But for all p ∈ [0, 1],

MVQ(p,N) ≤ max
1≤N ′≤N

MVQ(N ′) = MVQ(1) = C ′(a∗(1)) < C ′(a∗∗)

using that MVQ is a decreasing function of N (Lemma 1). Thus the quality linkage model

does not admit a strictly mixed equilibrium.

Similarly if MVC(N) < C ′(a∗∗), then

MVC(p,N) ≤ max
1≤N ′≤N

MVC(N ′) = MVC(N) < C ′(a∗∗)

since MVC is a strictly increasing function of N (Lemma 1). So there does not exist a strictly

mixed equilibrium in the circumstance linkage model either. Indeed, this is exactly the range

for N that supports the symmetric all opt-in equilibrium in the circumstance linkage model.

If however MV (N) ≥ C ′(a∗∗), then

MVC(1) = MVC(0, N) < C ′(a∗∗) ≤MVC(1, N) = MVC(N).

This implies in particular that MVC is not constant over the range {1, ..., N}, so that

MVC(p,N) is strictly increasing in p. Since MVC(p,N) is also continuous in p, the interme-

diate value theorem yields existence of a unique p∗(N) ∈ (0, 1] satisfying MVC(p∗(N), N) =

C ′(a∗∗).

If N ≤ N∗, i.e. MV (N) = C ′(a∗∗), then it must be that p∗(N) = 1. Thus in particular

the opt-in equilibrium is unique whenever it exists. Otherwise p∗(N) < 1, in which case the

fact that MVC(p,N) is strictly increasing in N for fixed p ∈ (0, 1) further implies that p∗(N)

must be strictly decreasing in N. Finally, the effort level a∗∗ chosen in this equilibrium weakly

exceeds the effort level a∗C chosen in the symmetric opt-in equilibrium in the circumstance

linkage model, since R + µ ≥ C(a∗C) by (D.2), while R + µ = C(a∗∗) by (D.5).
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D.2 Proof of Lemma 2

Comparisons between equilibrium actions correspond directly to comparisons of marginal

values of effort. It is therefore sufficient to establish that MV (N) < 1 for all N, and

that MVQ(N) is decreasing while MVC(N) is increasing in N, with limN→∞MVC(N) < 1.

These facts in particular imply that MVQ(N) ≤MV (1) ≤MVC(N), with MV (1) dictating

equilibrium effort in the no-data linkages benchmark. Lemma 1 establishes the desired

monotonicity of the marginal value of effort, while the upper bound on MV and the limiting

value of MVC are established in Appendix C.

D.3 Proof of Proposition 2

Suppose all agents in a segment of size N enter and choose action a. Social welfare

W (1, a,N) = N · (2µ+ a− C(a))

is strictly increasing on a ∈ [0, aFB). Thus the comparison a∗Q(N) ≤ aNDL < aFB immedi-

ately implies that for all N , welfare is ranked

WQ(N) ≤ WNDL(N)

where the inequality is strict for all N > 1.

For segment sizes N < N∗, the equilibrium action in the circumstance linkage model

satisfies a∗C(N) ∈ [aNDL, aFB) (Theorem 2), so the same argument implies

WNS(N) ≤ WC(N)

with the inequality strict for N > 1. When the segment size N > N∗,

WC(N) = N · p(N) · [a∗∗ − C(a∗∗) + 2µ] .

Since p(N)→ 0 as N →∞, it follows that for N sufficiently large,

WC(N),WQ(N) < WNDL(N).

E Proofs for Section 5 (Data Sharing, Markets, and

Consumer Welfare)

E.1 Proof of Proposition 3

Definition E.1. The competitive transfer for a segment of n consumers is

R
∗
(n) = a∗(n) + µ (E.1)
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while the monopolist transfer is

R∗(n) = C[a∗(n)]− µ (E.2)

We first show that in any equilibrium under data sharing, consumers must receive all of

the generated surplus.

Lemma E.1. Consider either the quality linkage or circumstance linkage model. In any

equilibrium under data sharing, firms receive zero payoffs, and consumer welfare is

N × (2µ+ a∗(N)− C(a∗(N))) .

Proof. Fix any subset of firms F where |F | ≥ 2. Suppose each firm f ∈ F sets the compet-

itive transfer R
∗
(N) (as defined in (E.1)), while each firm f /∈ F chooses a transfer weakly

below R
∗
(N). Consumers opt-out if no firm offers a transfer above R∗(N). Otherwise,

consumers participate with the firm offering the highest transfer, and exert effort a∗(N).

We now show that this is an equilibrium. By choosing the transfer R
∗
(N), firms f ∈ F

receive a payoff of −R∗(N) + µ+ a∗(N) = 0 per consumer. They cannot profitably deviate,

since reducing their transfer would lose all of their consumers, while increasing their transfer

would result in a negative payoff. Firms f /∈ F acquire consumers only by setting a transfer

strictly above R
∗
(N), which leads to a negative payoff. So there are no profitable deviations

for firms. Consumers also have no profitable deviations: participation with any firm in F

leads to the same (strictly positive) payoff, while participation with any firm f /∈ F involves

the same equilibrium effort but a lower transfer. So the described strategies constitute an

equilibrium.

Moreover these equilibria are the only equilibria under data sharing. Suppose towards

contradiction that some firm f receiving consumers sets Rf < R
∗
(N). If another firm f ′

offers a transfer Rf ′ ∈ (Rf , R
∗
(N)], then consumers participating with firm f can profitably

deviate to participating with firm f ′. If no firms f ′ offer transfers in the interval (Rf , R
∗
(N)],

then firm f can profitably deviate by raising its transfer. So transfers below R
∗
(N) are ruled

out for firms receiving consumers. If any firm receiving consumers sets a transfer exceeding

R
∗
(N) (which yields a negative payoff), then that firm can strictly profit by deviating to

R
∗
(N) (which yields a payoff of zero). So transfers above R

∗
(N) are ruled out as well. In

equilibrium, it must therefore be that all firms that receive consumers set transfer R
∗
(N).

Firms not receiving consumers must set transfers weakly below R
∗
(N), or consumers

could profitably deviate to one of these firms. Finally, since in equilibrium agents know

the number of agents participating with their firm, uniqueness of agent effort follows from

arguments given already in the proofs for exogenous transfers (see Section 4).
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We show next that (E.1) is an upper bound on achievable consumer welfare under pro-

prietary data in the circumstance linkage setting. Consider any equilibrium, and let Nf

be the number of agents participating with firm f in that equilibrium. We can obtain an

upper bound on consumer welfare by evaluating consumer payoffs supposing that all firms

set the competitive transfer. Then, each agent interacting with firm f achieves a payoff of

R
∗
(Nf ) + µ− C(a∗C(Nf )). But

R
∗
(Nf ) + µ− C(a∗C(Nf )) = a∗C(Nf ) + 2µ− C[a∗C(Nf )]

≤ a∗C(N) + 2µ− C(a∗C(N)),

since the function ξ(n) = a∗C(n) − C(a∗C(n)) is increasing, and N ≥ Nf . Thus consumer

welfare is bounded above by N × (a∗C(N) + 2µ − C(a∗C(N))) as desired. Since this bound

holds uniformly across all allocations of consumers to firms, welfare must be weakly higher

under data sharing than in any equilibrium with proprietary data.

Now consider the quality linkage model. We first show that in equilibrium, all consumers

must be served by a single firm.

Lemma E.2. In the quality linkage model under proprietary data, in every equilibrium

exactly one firm receives consumers.

Proof. Suppose towards contradiction that there is an equilibrium in which two firms f = 1, 2

set transfers Rf and receive Nf > 0 agents. Then, each agent interacting with firm f must

choose the effort level a∗Q(Nf ). Agents’ IC constraints are described as follows: First,

R1 + µ− C(a∗Q(N1)) ≥ R2 + µ− C(a∗Q(N2 + 1))

or agents participating with firm 1 could profitably deviate to participating with firm 2.

Likewise it must be that

R2 + µ− C(a∗Q(N2)) ≥ R1 + µ− C(a∗Q(N1 + 1))

or agents participating with firm 2 could profitably deviate to participating with firm 1.

These displays simplify to

R1 −R2 ≥ C(a∗Q(N1))− C(a∗Q(N2 + 1))

R2 −R1 ≥ C(a∗Q(N2))− C(a∗Q(N1 + 1)).

Summing these inequalities, we have

0 ≥ C(a∗Q(N1)) + C(a∗Q(N2))− C(a∗Q(N1 + 1))− C(a∗Q(N2 + 1))
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But C(a∗Q(n)) is strictly decreasing in n, so the right-hand side of the above display must be

strictly positive, leading to a contradiction.

Now suppose no firms receive consumers in equilibrium. If there exists a firm offering a

transfer R > R∗(1), then it is strictly optimal for a consumer to deviate to interaction with

that firm at effort a∗(1). Otherwise, it is strictly optimal for a firm to deviate to any transfer

R ∈ (R∗M(1), R
∗
(1)) and receive consumers.

The lemma says that only one firm receives a strictly positive number of consumers in

equilibrium; without loss, let this be firm 1. Consumer welfare is maximized when firm 1

sets the competitive transfer R
∗
(N), in which case consumers receive (E.1), so consumer

welfare under proprietary data must be weakly lower than under data sharing, completing

our proof.
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O For Online Publication

O.1 Distributional Regularity Results

To establish our main results we rely heavily on boundedness and smoothness of various likelihood

and posterior distribution functions. In this section we prove a number of technical lemmas ensuring

sufficient smoothness of functions invoked in proofs elsewhere.

We first prove a general result showing that log-concave density functions are necessarily

bounded.

Lemma O.1. Let f : R → R be any strictly positive, strictly log-concave function satisfying27∫∞
−∞ f(x) dx <∞. Then f is bounded.

Proof. As f is bounded below by 0, it suffices to show that it is bounded above. Since log f is

strictly concave everywhere, it is either a strictly monotone function, or else has a global maximizer.

Suppose that log f is strictly increasing everywhere. Then f must be strictly increasing everywhere

as well. But then as f > 0,∫ ∞
−∞

f(x) dx ≥
∫ ∞

0
f(x) dx ≥

∫ ∞
0

f(0) dx =∞,

a contradiction of our assumption. So log f cannot be strictly increasing everywhere. Suppose

instead that log f is strictly decreasing everywhere. Then f must be strictly decreasing everywhere

as well. But then as f > 0,∫ ∞
−∞

f(x) dx ≥
∫ 0

−∞
f(x) dx ≥

∫ ∞
0

f(0) dx =∞,

another contradiction. So f must have a global maximizer, meaning that it is bounded above as

desired.

Corollary O.1. fθ, fθ, fθ⊥ , fε, fε, fε⊥ are each bounded.

The following lemma establishes a set of regularity conditions on a likelihood function sufficient

to ensure that its associated posterior distribution function is C1 in both its arguments. Note

that these conditions amount to the regularity conditions imposed in SMLRP, plus a continuity

condition on the density of the unobserved variable.

Lemma O.2. Let X and Y be two random variables for which the density g(y) for Y and the

conditional densities f(x | y) for X | Y exist. Suppose that:

• f(x | y) is a C1,0 function and g(y) is continuous,

27Since log f is strictly concave everywhere, it is continuous everywhere. Then so is f, meaning that f is

a measurable function.
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• f(x, y) and ∂
∂xf(x | y) are both uniformly bounded for all (x, y).

Then H(x, y) ≡ Pr(Y ≤ y | X = x) is a C1 function of (x, y).

Proof. Let G be the distribution function for y. By Bayes’ rule,

H(x, y) =

∫ y
−∞ f(x | y′) dG(y′)∫∞
−∞ f(x | y′′) dG(y′′)

.

We first establish continuity of this function. It is sufficient to establish continuity of the numerator

and denominator separately. As for the denominator, f(x | y′′) is continuous in x and uniformly

bounded for all (x, y′′), so by the dominated convergence theorem the denominator is continuous

in x, thus also in (x, y) given its independence of y. As for the numerator, write∫ y

−∞
f(x | y′) dG(y′) =

∫ ∞
−∞

1{y′ ≤ y}f(x | y′) dG(y′).

Consider any sequence converging to (x0, y0). Given the continuity of f(x | y), the integrand

converges pointwise G-a.e. to 1{y′ ≤ y0}f(x0 | y′). (The only point of potential nonconvergence

is at y′ = y0, but since Y is a continuous distribution this point is assigned measure zero under

G.) As the integrand is also uniformly bounded above for all (x, y, y′), the dominated convergence

theorem ensures that the numerator is continuous in (x, y).

Next, note that ∂H/∂y exists and is given by

∂H

∂y
(x, y) =

f(x | y)g(y)∫∞
−∞ f(x | y′′) dG(y′′)

,

which is continuous everywhere given that the denominator is continuous by the argument of the

previous paragraph while f(x | y) and g(y) are continuous by assumption.

Finally, consider ∂H/∂x. Let Ĥ(x, y) ≡ H(x, y)−1 − 1. Then ∂H
∂x (x, y) exists and satisfies

∂H
∂x (x, y) < 0 iff ∂Ĥ

∂x (x, y) exists and satisfies ∂Ĥ
∂x (x, y) > 0. Note that Ĥ(x, y) may be written

Ĥ(x, y) =

∫∞
y f(x | y′) dG(y′)∫ y
−∞ f(x | y′′) dG(y′′)

.

Because ∂
∂xf(x | y) exists and is uniformly bounded for all x and y, the Leibniz integral rule ensures

that this expression is differentiable with respect to x with derivative

∂Ĥ

∂x
(x, y) =

∫∞
y

∂
∂xf(x | y′) dG(y′)∫ y

−∞ f(x | y′′) dG(y′′)
−

(∫∞
y f(x | y′) dG(y′)

)(∫ y
−∞

∂
∂xf(x | y′′) dG(y′′)

)
(∫ y
−∞ f(x | y′′) dG(y′′)

)2 .

With some rearrangement, this may be equivalently written

∂Ĥ

∂x
(x, y) =

(∫ y

−∞
f(x | y′′) dG(y′′)

)−2

×
∫ ∞
y

dG(y′)

∫ y

−∞
dG(y′′)

(
f(x | y′′) ∂

∂x
f(x | y′)− f(x | y′) ∂

∂x
f(x | y′′)

)
.
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This function is continuous if both∫ ∞
−∞

1{y′′ ≤ y}f(x | y′′) dG(y′′)

and∫ ∞
−∞

dG(y′)

∫ ∞
−∞

dG(y′′)1{y′ ≥ y}1{y′′ ≤ y}
(
f(x | y′′) ∂

∂x
f(x | y′)− f(x | y′) ∂

∂x
f(x | y′′)

)
are continuous. We have already seen that the former is continuous, so consider the latter expres-

sion. By assumption f(x | y) and ∂
∂xf(x | y) are both continuous in (x, y). Thus for any sequence

converging to (x0, y0), the integrand converges to

1{y′ ≥ y0}1{y′′ ≤ y0}
(
f(x0 | y′′)

∂

∂x
f(x | y′)

∣∣∣∣
x=x0

− f(x0 | y′)
∂

∂x
f(x | y′′)

∣∣∣∣
x=x0

)

except possibly at points (y′, y′′) such that y′ = y0 or y′′ = y0, a set which is assigned zero measure

under G × G given the continuity of the distribution of Y. Further, since f(x | y) and ∂
∂xf(x | y)

are both uniformly bounded for all (x, y), so is

f(x | y)
∂

∂x
f(x | y′)− f(x | y′) ∂

∂x
f(x | y)

for all x, y, y′. Then the dominated convergence theorem ensures that the entire expression converges

to its value at (x0, y0), as desired.

The next lemma establishes that the density functions of θi and εi remain continuous when

conditioned on a set of outcomes.

Lemma O.3. For each model M ∈ {Q,C}, agent i ∈ {1, ..., N}, and outcome-action profile (S,a):

• The conditional densities fMθi (θi | S;a) and fMθi (θi | S−j ;a) for each j ∈ {1, ..., N} are strictly

positive and continuous in θi everywhere,

• The conditional densities fMεi (εi | S;a) and fMεi (εi | S−j ;a) for each j ∈ {1, ..., N} are strictly

positive and continuous in εi everywhere.

Proof. Throughout the proof we suppress explicit dependence of distributions on the action profile

a. We prove the result for the quality linkage model, with the circumstance linkage model following

by permuting the roles of θi and εi.

Consider first the density of θi conditional on S. By Bayes’ rule

fQθi (θi | S) =
gQ1:N (S | θi)fθ(θi)

gQ1:N (S)
,

where

gQ1:N (S | θi) = gQi (Si | θi)
∫
dFQ

θ
(θ | θi)

∏
j 6=i

gQj (Sj | θ)
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and

gQ1:N (S) =

∫
dFθ(θ)

N∏
j=1

gQj (Sj | θ).

As gQ1:N (S | θi), gQ1:N (S), and fθ(θi) are all strictly positive, so is fQθi (θi | S). Further, gQi (Si | θi) =

fε(Si− θi− ai) is continuous in θi given the continuity of fε. Then fQθi (θi | S) is continuous in θi so

long as

fθ(θi)

∫
dFQ

θ
(θ | θi)

∏
j 6=i

gQj (Sj | θ) =

∫
dFθ(θ)fθ⊥(θ1 − θ)

∏
j 6=i

gQj (Sj | θ)

is. As fθ⊥ is bounded and continuous and
∫
dFθ(θ)

∏
j 6=i g

Q
j (Sj | θ) = g1:N (S) is finite, the dom-

inated convergence theorem ensures that this final term is continuous, as desired. The result for

the density of θi conditional on S−j for any j 6= i follows from nearly identical work.

Next consider the density of θi conditional on S−i. Now Bayes’ rule gives

fQθi (θi | S−i) =
gQ−i(S−i | θi)fθ(θi)

gQ−i(S−i)
,

where

gQ−i(S−i | θi) =

∫
dFQ

θ
(θ | θi)

∏
j 6=i

gQj (Sj | θ)

and

gQ−i(S−i) =

∫
dFθ(θ)

∏
j 6=i

gQj (Sj | θ).

As each of these terms is strictly positive, so is fQθi (θi | S−i). Further, gQ−i(S−i | θi)fθ(θi) was already

shown to be continuous in the previous paragraph. So fQθi (θi | S−i) is continuous in θi, as desired.

Next, consider the density of εi conditional on S. Bayes’ rule gives

fQεi (εi | S) =
gQ1:N (S | εi)fε(εi)

gQ1:N (S)
,

where

gQ1:N (S | εi) = gQi (Si | εi)
∏
j 6=i

gQj (Sj).

Then as gQi (Si | εi) = fθ(Si−εi−ai) is continuous in εi given the continuity of fθ, so is gQ1:N (S | εi).
The result for the density of εi conditional on S−j for any j 6= i follows by nearly identical work.

Finally, consider the density of εi conditional on S−i. In the quality linkage model εi is indepen-

dent of S−i, so gQεi(εi | S−i) = fε(εi), which is strictly positive and continuous by assumption.

The following pair of lemmas establishes that the posterior distribution functions of the agent’s

type conditional on the vector of outcomes satisfies a smoothness condition. To economize on

notation, the lemma is established with respect to agent 1’s latent variables, as the signal of agent

N moves. By symmetry an analogous result applies to all other pairs of agents.

71



Lemma O.4. For each model M ∈ {Q,C} and outcome-action profile (S−N ,a), FMθ1 (θ1 | S;a) is

a C1 function of (SN , θ1).

Proof. For convenience, we suppress the dependence of distributions on a in this proof. Fix S−N .

The result follows from Lemma O.2 so long as 1) fMθ1 (θ1 | S−N ) is continuous in θ1, and 2) gMN (SN |
θ1,S−N ) is a C1,0 function of (SN , θ1) and both it and its derivative wrt SN are uniformly bounded.

Lemma O.3 ensures that condition 1 holds, so we need only establish condition 2.

Consider first the quality linkage model. In this case gQN (SN | θ1,S−N ) = gQN (SN | θ1,S2:N−1),

as SN is independent of S1 conditional on θ1. And by the law of total probability,

gQN (SN | θ1,S2:N−1) =

∫
gQN (SN | θ, θ1,S2:N−1) dFQ

θ
(θ | θ1,S2:N−1).

As SN is independent of (θ1,S2:N−1) conditional on θ, this is equivalently

gQN (SN | θ1,S2:N−1) =

∫
gQN (SN | θ) dFQθ (θ | θ1,S2:N−1).

Since gQN (SN | θ) = fθ⊥+ε(SN − θ − aN ), which is uniformly bounded by some M for all (SN , θ),

gQN (SN | θ1,S2:N−1) is uniformly bounded by M as well for all (SN , θ1). Further, by Bayes’ rule

fQ
θ

(θ | θ1,S2:N−1) =
fQθ1(θ1 | θ,S2:N−1)fθ(θ | S2:N−1)

fQθ1(θ1 | S2:N−1)
.

Now, θ1 is independent of S2:N−1 conditional on θ, and so fQθ1(θ1 | θ,S2:N−1) = fQθ1(θ1 | θ) =

fθ⊥(θ1 − θ). Then fQ
θ

(θ | θ1,S2:N−1) is equivalently

fQ
θ

(θ | θ1,S2:N−1) =
fθ⊥(θ1 − θ)fθ(θ | S2:N−1)

fQθ1(θ1 | S2:N−1)
.

Inserting this into the previous expression for gQN (SN | θ1,S2:N−1) yields

gQN (SN | θ1,S2:N−1) =
1

fQθ1(θ1 | S2:N−1)

∫
fθ⊥+ε(SN − θ − aN )fθ⊥(θ1 − θ) dFQθ (θ | S2:N−1).

Applying Lemma O.3 to an (N − 1)-agent model implies that fQθ1(θ1 | S2:N−1) is continuous in θ1.

Meanwhile by assumption fθ⊥+ε(SN − θ− aN ) and fθ⊥(θ1 − θ) are both continuous in (SN , θ1) for

every θ, and are uniformly bounded above for every (θ1, SN , θ). Then by the dominated convergence

theorem the integral is also continuous in (SN , θ1), ensuring that gQN (SN | θ1,S2:N−1) is a continuous

function of (SN , θ1). Finally, consider differentiating wrt SN . As f ′
θ⊥+ε

exists and is uniformly

bounded, and fθ⊥ is also uniformly bounded, the Leibniz integral rule ensures that

∂

∂SN
gQN (SN | θ1,S2:N−1) =

1

fQθ1(θ1 | S2:N−1)

∫
f ′θ⊥+ε(SN − θ − aN )fθ⊥(θ1 − θ) dFQθ (θ | S2:N−1).

72



Since f ′
θ⊥+ε

is also continuous, this expression is continuous in (SN , θ1) following the same logic

which ensured that gQN (SN | θ1,S2:N−1) is continuous. Finally, let M be an upper bound on |f ′
θ⊥+ε
|.

Then as

fQθ1(θ1 | S2:N−1) =

∫
fθ⊥(θ1 − θ) dFQθ (θ | S2:N−1),

it follows that
∣∣∣ ∂
∂SN

gQN (SN | θ1,S2:N−1)
∣∣∣ is uniformly bounded above by M as well. So gQN (SN |

θ1,S2:N−1) satisfies condition 2.

Now consider the circumstance linkage model. In this model

gCN (SN | θ1 = t, S1 = s,S2:N−1) = gCN (SN | ε1 = s− t− a1,S2:N−1),

as ε1 = S1 − θ1 − a1 and SN is independent of S1 conditional on ε1. It is therefore enough to

establish that gCN (SN | ε1,S2:N−1) is a C1,0 function of (SN , ε1) with uniform bounds on it and its

derivative wrt SN . This follows from work nearly identical to the previous paragraph, substituting

ε1 for θ1 and ε for θ.

O.2 Proofs for the Gaussian Setting

O.2.1 Verification of Assumptions in 2.6

Here we verify that Gaussian uncertainty satisfies the stated assumptions. Assumptions 1, 2, 3, and

5 are immediate. Assumption 6 is satisfied for any strictly convex cost function, since the second

derivative of the posterior expectation in each signal realization is zero. Assumption 4 is verified

in the following lemma:

Lemma O.5. Suppose ξ ∼ N (0, σ2). Then for any ∆ > 0, the function

J∗(ξ) =
1

∆
2

(
exp

(
∆

2

2σ2

)
+ exp

(
∆|ξ|
σ2

)
− 2

)2

satisfies |J(ξ,∆)| ≤ J∗(ξ) for every ξ ∈ R and ∆ ∈ [−∆,∆], and E[J∗(ξ)] <∞.

Proof. Under the distributional assumption on ξ, the density function fξ has the form

fξ(ξ) =
1√

2πσ2
exp

(
− ξ2

2σ2

)
.

Therefore
1

∆

fξ(ξ −∆)− fξ(ξ)
fξ(ξ)

=
exp

(
1
σ2 ∆(ξ −∆/2)

)
− 1

∆
.

Now, we may equivalently write

1

∆

fξ(ξ −∆)− fξ(ξ)
fξ(ξ)

=
1

σ2

∫ ξ

∆/2
exp

(
1

σ2
∆(ξ̃ −∆/2)

)
dξ̃

=
exp

(
− ∆2

2σ2

)
σ2

∫ ξ

∆/2
exp

(
∆ξ̃

σ2

)
dξ̃.
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Hence ∣∣∣∣ 1

∆

fξ(ξ −∆)− fξ(ξ)
fξ(ξ)

∣∣∣∣ =
exp

(
− ∆2

2σ2

)
σ2

∫ max{∆/2,ξ}

min{∆/2,ξ}
exp

(
∆ξ̃

σ2

)
dξ̃

≤ 1

σ2

∫ max{∆/2,ξ}

min{∆/2,ξ}
exp

(
∆ξ̃

σ2

)
dξ̃.

Let

H(ξ,∆) ≡ 1

σ2

∫ max{∆/2,ξ}

min{∆/2,ξ}
exp

(
∆ξ̃

σ2

)
dξ̃.

We will show that H(ξ,∆) ≤
√
J∗(ξ) for all ξ and ∆ ∈ [−∆,∆] in cases, depending on the signs

of ξ,∆, and ξ −∆/2.

Case 1: ξ ≥ ∆/2 ≥ 0. Then

H(ξ,∆) =
1

σ2

∫ ξ

∆/2
exp

(
∆ξ̃

σ2

)
dξ̃

≤ 1

σ2

∫ ξ

0
exp

(
∆ξ̃

σ2

)
dξ̃ =

1

∆

(
exp

(
∆ξ

σ2

)
− 1

)
≤
√
J∗(ξ).

Case 2: ξ ≥ 0 > ∆/2. Then

H(ξ,∆) =
1

σ2

∫ ξ

∆/2
exp

(
∆ξ̃

σ2

)
dξ̃

≤ 1

σ2

(∫ ξ

0
exp

(
∆ξ̃

σ2

)
dξ̃ +

∫ 0

−∆/2
exp

(
−∆ξ̃

σ2

)
dξ̃

)

=
1

∆

(
exp

(
∆ξ

σ2

)
+ exp

(
∆

2

2σ2

)
− 2

)
=
√
J∗(ξ).

Case 3: ∆/2 > ξ ≥ 0. Then

H(ξ,∆) =
1

σ2

∫ ∆/2

ξ
exp

(
∆ξ̃

σ2

)
dξ̃

≤ 1

σ2

∫ ∆/2

0
exp

(
∆ξ̃

σ2

)
dξ̃ =

1

∆

(
exp

(
∆

2

2σ2

)
− 1

)
≤
√
J∗(ξ).

Case 4: ∆/2 > 0 > ξ. Then

H(ξ,∆) =
1

σ2

∫ ∆/2

ξ
exp

(
∆ξ̃

σ2

)
dξ̃

≤ 1

σ2

(∫ ∆/2

0
exp

(
∆ξ̃

σ2

)
dξ̃ +

∫ 0

ξ
exp

(
−∆ξ̃

σ2

)
dξ̃

)

=
1

∆

(
exp

(
∆

2

2σ2

)
+ exp

(
∆|ξ|
σ2

)
− 2

)
=
√
J∗(ξ).
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Case 5: 0 ≥ ∆/2 > ξ. Then

H(ξ,∆) =
1

σ2

∫ ∆/2

ξ
exp

(
∆ξ̃

σ2

)
dξ̃

≤ 1

σ2

∫ 0

ξ
exp

(
−∆ξ̃

σ2

)
dξ̃ =

1

∆

(
exp

(
∆|ξ|
σ2

)
− 1

)
≤
√
J∗(ξ).

Case 6: 0 > ξ ≥ ∆/2. Then

H(ξ,∆) =
1

σ2

∫ ξ

∆/2
exp

(
∆ξ̃

σ2

)
dξ̃

≤ 1

σ2

∫ 0

−∆/2
exp

(
−∆ξ̃

σ2

)
dξ̃ =

1

∆

(
exp

(
∆

2

2σ2

)
− 1

)
≤
√
J∗(ξ).

This establishes that |J(ξ,∆)| ≤ H(ξ,∆)2 ≤ J∗(ξ) for every ξ and ∆ ∈ [−∆,∆], as desired. It

remains only to show that J∗ is P0-integrable. This follows because

J∗(ξ) ≤ 1

∆
2

(
exp

(
∆

2

2σ2

)
+ exp

(
∆|ξ|
σ2

))2

=
1

∆
2

(
exp

(
∆

2

σ2

)
+ 2 exp

(
∆

2

σ2

)
exp

(
∆|ξ|
σ2

)
+ exp

(
2∆|ξ|
σ2

))

=
1

∆
2

(
exp

(
∆

2

σ2

)
+ 2 exp

(
∆

2

σ2

)(
exp

(
∆ξ

σ2

)
+ exp

(
−∆ξ

σ2

))
+ exp

(
2∆ξ

σ2

)
+ exp

(
−2∆ξ

σ2

))
The first term is a constant, while each of the remaining terms is proportional to a lognormal

random variable. Thus each term has finite mean, and hence so does J∗(ξ).

O.2.2 Marginal Value of Effort

Consider the quality linkage model, and suppose that agent i chooses effort ai = a∗ + ∆ while all

agents j 6= i choose the equilibrium effort level a∗. The principal’s posterior belief about θ + θ⊥i is

independent of S−i conditional on θ. Thus, using standard formulas for updating to normal signals,

we can first update the principal’s belief about θ to θ | S−i ∼ N
(
µ̂θ, σ̂θ2

)
, where

µ̂θ ≡
(N − 1)σ2

θ
· (S−i − a∗) + (σ2

θ⊥
+ σ2

ε) · µ
(N − 1)σ2

θ
+ σ2

θ⊥
+ σ2

ε

, σ̂2
θ
≡

σ2
θ

(N − 1)σ
θ
2 + σ2

θ⊥
+ σ2

ε

.

and S−i is the average outcome. The principal’s expectation of θ+ θ⊥i after further updating to Si

is

E(θ + θ⊥i | S) =
σ2
ε

σ̂
θ
2 + σ2

θ⊥
+ σ2

ε

· (S−i − a∗) +
σ̂
θ
2 + σ2

θ⊥

σ̂
θ
2 + σ2

θ⊥
+ σ2

ε

· (Si − a∗).
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Taking an expectation with respect to the agent’s prior belief, we have:

µN (∆) = E
[
E(θ + θ⊥i | S)

]
=

σ2
ε

σ̂
θ
2 + σ2

θ⊥
+ σ2

ε

· µ+
σ̂
θ
2 + σ2

θ⊥

σ̂
θ
2 + σ2

θ⊥
+ σ2

ε

· (µ+ ∆)

= µ+
σ̂
θ
2 + σ2

θ⊥

σ̂
θ
2 + σ2

θ⊥
+ σ2

ε

·∆

and the marginal value of effort is

µ′N (∆) =
σ̂
θ
2 + σ2

θ⊥

σ̂
θ
2 + σ2

θ⊥
+ σ2

ε

=

(
σ2
θ

(N − 1)σ
θ
2 + σ2

θ⊥
+ σ2

ε

+ σ2
θ⊥

)
/

(
σ2
θ

(N − 1)σ
θ
2 + σ2

θ⊥
+ σ2

ε

+ σ2
θ⊥ + σ2

ε

)
. (O.1)

It is straightforward to verify that this expression is independent of ∆, decreasing in N , and

converges to σ2
θ⊥
/
(
σ2
θ⊥

+ σ2
ε

)
as N →∞.

Consider now the circumstance linkage model. Using parallel arguments to those above, the

principal’s posterior belief about the common part of the noise shock ε after updating to S−i is

ε | S−i ∼ N
(

(N − 1)σ2
ε

(N − 1)σ2
ε + σ2

θ + σ2
ε⊥
·
(
S−i − a∗ − µ

)
,

σ2
ε(σ

2
ε⊥

+ σ2
θ)

(N − 1)σ2
ε + σ2

ε⊥
+ σ2

θ

)
≡ N (η, σ̂2

ε)

and the principal’s posterior expectation of θi after further updating to Si is

E(θi | S) =
σ2
θ

σ2
θ + σ̂2

ε + σ2
ε⊥
· (Si − η) +

σ̂2
ε + σ2

ε⊥

σ2
θ + σ̂2

ε + σ2
ε⊥
· µ

Since in the agent’s prior, E(Si) = µ + ∆ and E(η) = 0, the agent’s expectation of the principal’s

forecast is

µN (∆) = E(θi | S) = µ+
σ2
θ

σ2
θ + σ̂2

ε + σ2
ε⊥
·∆

implying that the marginal value of effort is

µ′N (∆) = σ2
θ/(σ

2
θ + σ̂2

ε + σ2
ε)

= σ2
θ/

(
σ2
θ +

σ2
ε(σ

2
ε⊥

+ σ2
θ)

(N − 1)σ2
ε + σ2

ε⊥
+ σ2

θ

+ σ2
ε

)
(O.2)

This expression is constant in ∆, increasing in N , and converges to σ2
θ/(σ

2
θ +σ2

ε) as N grows large.

O.3 Proofs for Section 6 (Extensions)

O.3.1 Proof of Proposition 4

Consider first the quality linkage model. Let µm(∆) be the agent’s value of distortion when m ∈
{0, ...J} linkages have been identified. As in the main model, this value is differentiable and
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independent of the action the principal expects the agent to take. (See the proof of Lemma C.1.)

Agent 0’s equilibrium effort is then determined by

µ′m(0) = C ′(a0).

We prove that µ′m(0) > µ′m+1(0) for every m.

Let Sj = (Sj1, ..., S
j
Nj

) be the vector of signal realizations for each segment j, and S1:m for the

matrix of signal realizations for all signal realizations from segments 1 through m. We will write

Gj for the distribution function of each Sj , and G0:m for the distribution function of (S0,S1:m).

Dropping explicit conditioning on actions for convenience, a change of variables as in the proof of

Lemma 1 allows us to write µm(∆) and µm+1(∆) as

µm(∆) =

∫
dG0:m(S0 = s0,S

1:m)E[θ0 | S0 = s0 + ∆,S1:m]

and

µm+1(∆) =

∫
dG0:m+1(S0 = s0,S

1:m+1)E[θ0 | S0 = s0 + ∆,S1:m+1]

for some common set of actions. The law of iterated expectations applied to E[θ0 | S0 = s0+∆,S1:m]

allows the previous expression for µm(∆) to be expanded as

µm(∆) =

∫
dG0:m(S0 = s0,S

1:m)

×
∫
dGm+1(Sm+1 | S0 = s0 + ∆,S0:m)E[θ0 | S0 = s0 + ∆,S1:m+1].

Meanwhile the law of iterated expectations applied to the outer expectation allows µm+1(∆) to be

expanded as

µm+1(∆) =

∫
dG0:m(S0 = s0,S

1:m)

×
∫
dGm+1(Sm+1 | S0 = s0,S

0:m)E[θ0 | S0 = s0 + ∆,S1:m+1].

Each of these inner integrals may be further expanded using the law of total probability, yielding

µm(∆) =

∫
dG0:m(S0 = s0,S

1:m)

×
∫
dF

θ
m+1(θ

m+1 | S0 = s0 + ∆,S1:m)

×
∫
dGm+1(Sm+1 | θm+1

)E[θ0 | S0 = s0 + ∆,S1:m+1]

and

µm+1(∆) =

∫
dG0:m(S0 = s0,S

1:m)

×
∫
dF

θ
m+1(θm+1 | S0 = s0,S

1:m)

×
∫
dGm+1(Sm+1 | θm+1

)E[θ0 | S0 = s0 + ∆,S1:m+1]
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where we have used the fact that Sm+1 is independent of (S0,S
1:m) conditional on θm+1 to drop

extraneous conditioning in the inner expectation.

So define a function ψ(δ1, δ2, s0,S
1:m) by

ψ(δ1, δ2, s0,S
1:m) ≡

∫
dF

θ
m+1(θ

m+1 | S0 = s0 + δ1,S
1:m)

×
∫
dGm+1(Sm+1 | θm+1

)E[θ0 | S0 = s0 + δ2,S
1:m+1].

Then for every ∆ > 0 we have

1

∆
µm(∆)− µm+1(∆) =

∫
dG0:m(S0 = s0,S

1:m)
1

∆

(
ψ(∆,∆, s0,S

1:m)− ψ(∆, 0, s0,S
1:m)

)
.

Since

µ′m(0)− µ′m+1(0) = lim
∆↓0

(µm(∆)− µ)− lim
∆↓0

(µm+1(∆)− µ) = lim
∆↓0

(µm(∆)− µm+1(∆),

It is therefore sufficient to determine the limiting behavior of

1

∆

(
ψ(∆,∆, s0,S

1:m)− ψ(∆, 0, s0,S
1:m)

)
as ∆ ↓ 0.

Note that

Sm+1
i = θ

m
+ θ⊥,mi + εi,

where the densities of θ⊥,mi and εi each exist and are bounded by assumption. Then there exists

a differentiable distribution function H with bounded derivative such that Gm+1
i (Sm+1

i | θm+1
) =

H(Sm+1
i − θm+1

) for each agent i in segment m + 1. Since the elements of Sm+1 are independent

conditional on θ
m+1

, we may write

Gm+1(Sm+1 | θm+1) =

Nm+1∏
i=1

H(Sm+1
i − θm+1

).

A change of variables therefore yields∫
dGm+1(Sm+1 | θm+1

)E[θ0 | S0 = s0 + δ1,S
1:m+1]

=

∫ 1

0
dq1...

∫ 1

0
dqNm+1E[θ0 | S0 = s0 + δ2,S

1:m,Sm+1 = (H−1(qi) + θ
m+1

)i=1...,Nm ].

Now fix s0 and S1:m, and denote the integrand of this representation

ζ(z, δ,q) ≡ E[θ0 | S0 = s0 + δ,S1:m,Sm+1 = (H−1(qi) + z)i=1...,Nm ],

where q ≡ (q1, ..., qNm+1). Using techniques very similar to that used to prove Lemma B.3, it

can be shown that there exists a C1 quantile function φ(q, δ) satisfying ∂φ/∂δ > 0 such that
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F
θ
m+1(φ(q, δ) | S0 = s0 + δ,S1:m) = q for every q0 and ∆. Then by a further change of variables, ψ

may be written

ψ(δ1, δ2, s0,S
1:m) =

∫ 1

0
dq0...

∫ 1

0
dqNm+1 ζ(φ(q0, δ1), δ2,q).

By assumption, E[θ0 | S0,S
1:m+1] is differentiable wrt each Sm+1

i , and by arguments very similar

to those used to prove Lemma B.8, it can be shown that ∂
∂Sm+1

i

E[θ0 | S0,S
1:m+1] > 0 for every

i = 1, ...,m+ 1. Since additionally ∂φ/∂δ > 0 everywhere, it follows that

ζ(φ(q0,∆),∆,q) > ζ(φ(q0, 0),∆,q)

for every ∆ > 0 and (q0,q), and thus that

1

∆

(
ψ(∆,∆, s0,S

1:m)− ψ(∆, 0, s0,S
1:m)

)
=

∫ 1

0
dq0...

∫ 1

0
dqNm+1

1

∆
(ζ(φ(q0,∆),∆,q)− ζ(φ(q0, 0),∆,q))

is strictly positive for every ∆ > 0. Since this result holds for every (s0,S
1:N ), Fatou’s lemma

therefore implies that

µ′m(0)− µ′m+1(0) ≥
∫
dG0:m(S0 = s0,S

1:m) lim inf
∆↓0

1

∆

(
ψ(∆,∆, s0,S

1:m)− ψ(∆, 0, s0,S
1:m)

)
and

lim inf
∆↓0

1

∆

(
ψ(∆,∆, s0,S

1:m)− ψ(∆, 0, s0,S
1:m)

)
≥
∫ 1

0
dq0...

∫ 1

0
dqNm+1 lim

∆↓0

1

∆
(ζ(φ(q0,∆),∆,q)− ζ(φ(q0, 0),∆,q)).

Further, the integrand of the previous expression can be equivalently written

1

∆
(ζ(φ(q0,∆),∆,q)− ζ(φ(q0, 0),∆,q))

=
1

∆
(ζ(φ(q0,∆),∆,q)− ζ(φ(q0, 0), 0,q))− 1

∆
(ζ(φ(q0, 0),∆,q)− ζ(φ(q0, 0), 0,q)).

Now, by assumption E[θ0 | S0,S
1:m+1] is differentiable wrt S0 and each Sm+1

i , and each derivative is

continuous in (S0,S
m+1). Hence E[θ0 | S0,S

1:m+1] is a totally differentiable function of (S0,S
1:m+1)

everywhere. Thus by the chain rule

lim
∆↓0

1

∆
(ζ(φ(q0,∆),∆,q)− ζ(φ(q0, 0),∆,q))

=
∂

∂S0
E[θ0 | S0 = s0,S

1:m,Sm+1 = (H−1(qi) + φ(q0, 0))i=1...,Nm ]

+

Nm∑
i=1

∂

∂Sm+1
i

E[θ0 | S0 = s0,S
1:m,Sm+1 = (H−1(qi) + φ(q0, 0))i=1...,Nm ]

∂φ

∂∆
(q0, 0)

− ∂

∂S0
E[θ0 | S0 = s0,S

1:m,Sm+1 = (H−1(qi) + φ(q0, 0))i=1...,Nm ]

=

Nm∑
i=1

∂

∂Sm+1
i

E[θ0 | S0 = s0,S
1:m,Sm+1 = (H−1(qi) + φ(q0, 0))i=1...,Nm ]

∂φ

∂∆
(q0, 0).
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As noted earlier, each of these derivatives is strictly positive, and so it follows that the entire limit

is strictly positive. Thus

lim inf
∆↓0

1

∆

(
ψ(∆,∆, s0,S

1:m)− ψ(∆, 0, s0,S
1:m)

)
> 0

everywhere, meaning in turn that µ′m(0)−µ′m+1(0) > 0. In other words, the marginal value of effort

is declining in m in the quality linkage model.

The result for the circumstance linkage model proceeds nearly identically, with the key difference

that now an analog of Lemma B.8 implies that ∂
∂Sm+1

i

E[θ0 | S0,S
1:m+1] < 0 for every i. Thus

lim
∆↓0

1

∆
(ζ(φ(q0, 0),∆,q)− ζ(φ(q0,∆),∆,q)) > 0

everywhere, so that

lim inf
∆↓0

1

∆

(
ψ(∆, 0, s0,S

1:m)− ψ(∆,∆, s0,S
1:m)

)
> 0

everywhere and hence µ′m+1(0) − µ′m(0) > 0. So the marginal value of effort is rising in m in the

circumstance linkage model.
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